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This is the appendix for the paper that describes Lenia, an artificial life
system of a two-dimensional cellular automaton with continuous space-
time state and generalized local rule. This appendix includes (A) a guide
to computer implementation; (B) more results, including the tree of arti-
ficial  life,  architecture  and  symmetry;  (C)  a  case  study  of  the  life  form
genus  Paraptera;  (D)  more  discussion  on  the  nature  of  Lenia;  and
(E) open questions and future work.
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Computer ImplementationA.

Discrete  Lenia  can  be  implemented  with  the  following  pseudocode,
assuming  an  array  programming  language  is  used  (e.g.,  Python  with
NumPy, MATLAB, Wolfram Language).

Interactive  programs  have  been  written  in  JavaScript/HTML5,
Python and MATLAB to provide a user interface for species discovery
and  real-time  analysis  (Figure  A.1(a–b)).  A  noninteractive  program
has  been  written  in  C#.NET  for  automatic  traverse  through  the
parameter  space  using  a  flood  fill  algorithm  (breadth-first  or  depth-
first  search),  providing  species  distribution,  statistical  data  and  occa-
sionally new species. 
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Figure A.1.Computer  implementations  of  Lenia  with  interactive  user  inter-
faces.  (a)  Web  version  run  in  Chrome  browser  and  (b)  Python  version  with
GPU support. (c–f) Different views during simulation, including (c) the config-
uration  At,  (d)  the  potential  Ut,  (e)  the  growth  Gt

 and  (f)  the  actual  change

ΔA  Δt  At+Δt - At  Δt. (g) Other color schemes.

State precision Δp can be implicitly implemented as the precision of

floating-point numbers. For values in the unit interval 0, 1, the preci-

sion  ranges  from  2-126  to  2-23  (about  1.2⨯10-38  to  1.2⨯10-7)  using

32-bit  single  precision,  or  from  2-1022  to  2-52  (about  2.2⨯10-308  to

2.2⨯10-16)  using  64-bit  double  precision  [1].  That  means  P > 1015

using double precision. 
Discrete  convolution  can  be  calculated  as  the  sum  of  elementwise

products: 

K *At(x)  
n∈

K(n)At(x + n)
(A.1)

or alternatively, using the discrete Fourier transform (DFT) according
to the convolution theorem:

K *At  F-1F{K} · FAt. (A.2)

Efficient  calculation  can  be  achieved  using  the  fast  Fourier  trans-
form  (FFT)  [2],  pre-calculation  of  the  kernel’s  FFT  ℱ {K}  and  parallel
computing  like  GPU  acceleration.  The  DFT/FFT  approach  automati-
cally produces a periodic boundary condition. 
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PseudocodeA.1

The  symbol  @  indicates  a  two-dimensional  matrix  of  floating-point
numbers.

function pre_calculate_kernel(beta, dx)
 @radius = get_polar_radius_matrix(SIZE_X, SIZE_Y) * dx
 @Br = size(beta) * @radius
 @kernel_shell = beta[floor(@Br)] * kernel_core(@Br % 1)
 @kernel = @kernel_shell / sum(@kernel_shell)
 @kernel_FFT = FFT_2D(@kernel)
 return @kernel, @kernel_FFT
end

function run_automaton(@world, @kernel, @kernel_FFT, mu, sigma, dt)
 if size(@world) is small
   @potential = elementwise_convolution(@kernel, @world)
 else
   @world_FFT = FFT_2D(@world)
   @potential_FFT = elementwise_multiply(@kernel_FFT, @world_FFT)
   @potential = FFT_shift(real_part(inverse_FFT_2D(@potential_FFT)))
 end
 @growth = growth_mapping(@potential, mu, sigma)
 @new_world = clip(@world + dt * @growth, 0, 1)
 return @new_world, @growth, @potential
end

function simulation()
 R, T, mu, sigma, beta = get_parameters()
 dx = 1/R;  dt = 1/T;  time = 0
 @kernel, @kernel_FFT = pre_calculate_kernel(beta, dx)
 @world = get_initial_configuration(SIZE_X, SIZE_Y)
 repeat
   @world, @growth, @potential = run_automaton(@world, 
       @kernel, @kernel_FFT, mu, sigma, dt)
   time = time + dt
   display(@world, @potential, @growth)
 end
end

User InterfaceA.2

For  implementations  requiring  an  interactive  user  interface,  one  or
more of the following components are recommended:

◼ Controls for starting and stopping CA simulation 

◼ Panels for displaying different stages of CA calculation 

◼ Controls for changing parameters and spacetime-state resolutions 
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◼ Controls for randomizing, transforming and editing the configuration 

◼ Controls for saving, loading and copy-and-pasting configurations 

◼ Clickable list for loading predefined patterns 

◼ Utilities for capturing the display output (e.g., image, GIF, movie) 

◼ Controls for customizing the layout (e.g., grid size, color map) 

◼ Controls for autocentering, autorotating and temporal sampling 

◼ Panels or overlays for displaying real-time statistical analysis 

Pattern StorageA.3

A  pattern  can  be  stored  for  publication  and  sharing  using  a  data
exchange  format  (e.g.,  JSON,  XML)  that  includes  the  run-length
encoding (RLE) of the two-dimensional array At

 and its associated set-

tings  R, T, P, μ, σ, β, KC, G,  or  alternatively,  using  a  plaintext  for-

mat  (e.g.,  CSV)  for  further  analysis  or  manipulation  in  numeric
software.

A  long  list  of  interesting  patterns  can  be  saved  as  JSON/XML  for
program  retrieval.  To  save  storage  space,  patterns  can  be  stored  with
space  resolution  R  as  small  as  possible  (usually  10 ≤ R ≤ 20)  thanks
to Lenia’s scale invariance (see Section 3.1). 

EnvironmentA.4

Most  of  the  computer  simulations,  experiments,  statistical  analysis,
image and video capturing for this paper were done using the follow-
ing environments and settings:

◼ Hardware:  Apple  MacBook  Pro  (OS  X  Yosemite),  Lenovo  ThinkPad
X280 (Microsoft Windows 10 Pro) 

◼ Software: Python 3.7.0, MathWorks MATLAB Home R2017b, Google
Chrome browser, Microsoft Excel 2016 

◼ State precision: double precision 

◼ Kernel core and growth mapping: exponential 

More ResultsB.

Tree of Artificial LifeB.1

The  notion  of  “life,”  here  interpreted  as  self-organizing  autonomous
entities  in  a  broader  sense,  may  include  biological  life,  artificial  life
and  other  possibilities  like  extraterrestrial  life.  Based  on  life  forms
from Lenia and other systems, we propose the tree of artificial life:
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Artificialia 

Domain Synthetica, “wet” biochemical synthetic life 
Domain Mechanica, “hard” mechanical or robotic life, e.g., [3] 
Domain Simulata, “soft” computer simulated life 
Kingdom Sims, evolved virtual creatures, e.g., [4–6] 
Kingdom Greges, particle swarm solitons, e.g., [7–10] 
Kingdom Turing, reaction-diffusion solitons, e.g., [11–13] 
Kingdom Automata, cellular automata solitons 
Phylum Discreta, nonscalable, e.g., [14–16] 
Phylum Lenia, scalable, e.g., [17, 18] 

The current taxonomy of Lenia (Figure 7): 
Phylum Lenia 

Class Exokernel having strong outer kernel rings 
Order Orbiformes 
Family Orbidae (O), “disk bugs,” disks with central stalk 

Order Scutiformes 
Family Scutidae (S), “shield bugs,” disks with thick front 
Family Pterifera (P), “winged bugs,” one/two wings with sacs 
Family Helicidae (H), “helix bugs,” rotating versions of P 

Family Circidae (C), “circle bugs,” one or more concentric rings 
Class Mesokernel having kernel rings of similar heights 
Order Echiniformes 
Family Echinidae (E), “spiny bugs,” thorny or wavy species 
Family Geminidae (G), “twin bugs,” two or more compartments 
Family Ctenidae (Ct), “comb bugs,” P with narrow strips 
Family Uridae (U), “tailed bugs,” with tails of various lengths 
Class Endokernel having strong inner kernel rings 
Order Kroniformes 
Family Kronidae (K), “crown bugs,” complex versions of S, P 

Family Quadridae (Q), “square bugs,” 4⨯4 grids of masses 
Family Volvidae (V), “twisting bugs,” possibly complex H 

Order Radiiformes 
Family Dentidae (D), “gear bugs,” rotating with gear-like units 
Family Radiidae (R), “radial bugs,” regular or star polygon–shaped 

Family Bullidae (B), “bubble bugs,” bilateral with bubbles inside 
Family Lapillidae (L), “gem bugs,” radially distributed small rings 
Family Folidae (F), “petal bugs,” stationary with petal-like units 
Order Amoebiformes 
Family Amoebidae (A), “amoeba bugs,” volatile shape and behavior 

Much  like  real-world  biology,  the  taxonomy  of  Lenia  is  tentative
and  is  subject  to  revisions  or  redefinitions  when  more  data  is
available. 

NamingB.2

Following  Jansen  for  naming  artificial  life  using  biological  nomencla-
ture  (Animaris  spp.)  [3],  each  Lenia  species  was  given  a  binomial
name  that  describes  its  geometric  shape  (genus  name)  and  behavior
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(species  name)  to  facilitate  analysis  and  communication.  Alphanu-
meric  code  was  given  in  the  form  “BGUs”  with  initials  of  rank  (B),
genus or family name (G), species name (s) and number of units (U).

The suffix “-ium” in genus names is reminiscent of a bacterium or
chemical  elements,  while  suffixes  “-inae”  (subfamily),  “-idae”
(family)  and  “-iformes”  (order)  were  borrowed  from  actual  animal
taxa.  The  numeric  prefix  in  genus  names  indicates  the  number  of
units, similar to organic compounds and elements (IUPAC names). Pre-
fixes used are: Di-, Tri-, Tetra-, Penta-, Hexa-, Hepta-, Octa-, Nona-,
Deca-, Undeca-, Dodeca-, Trideca- and so on. 

ArchitectureB.3

Lenia  life  forms  possess  morphological  structures  of  various  kinds,
but they can be summarized into the following types of architectures:

◼ Segmented architecture is the serial combination of a few basic compo-
nents, prevalent in class Exokernel (O, S, P, H), also Ct, U, K. 

◼ Radial  architecture  is  the  radial  arrangement  of  repeating  units,  com-
mon in Radiiformes in class Endokernel (D, R, B, L, F), also C, E, V. 

◼ Swarm  architecture  is  the  volatile  cluster  of  granular  masses,  not  con-
fined to a particular geometry or locomotion, as in G, Q, A. 

Components and MetamerismB.4

Segmented  architecture  is  composed  of  the  following  inventory  of
components (class Exokernel only) (Figure 10(a–c, f)).

◼ The orb (disk) is a circular disk halved by a central stalk, found in O. 

◼ The scutum (shield) is a disk with a thick front shield, found in S. 

◼ The  wing  has  two  versions:  the  orboid  (disk-like)  wing  is  a  distorted
orb  with  a  budding  mechanism  that  creates  and  destroys  sacs
repeatedly, found in concave S, P, H; the scutoid (shield-like) wing is a
distorted scutum, found in convex S, P, H. 

◼ The vacuole (sac) is a disk between the wings of long-chain S, P, H. 

Many  of  these  components  are  possibly  interrelated,  for  example,
the orboid wing and the orb, the scutoid wing and the scutum, as sug-
gested by the similarity or smooth transitions between species. 

Multiple  components  can  be  combined  serially  into  long  chains
through fusion or adhesion (e.g., Figure 7(O:2) or (O:1)), in a fashion
comparable  to  metamerism  in  biology  (or  multicellularity  if  we  con-
sider the components as “cells”) (Figure 10(f–g)). 

Long-chain species exhibit different degrees of convexity, from con-
vex to concave: S > convex P (arcus subgenus) > linear O > concave P
(cavus subgenus); sinusoidal P (sinus subgenus) have hybrid convexity
(Figure 10(i), 7 column 1). 
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Higher-rank segmented Ct, U, K also exhibit metamerism and con-
vexity with more complicated components. 

Symmetry and AsymmetryB.5

Structural symmetry is a prominent characteristic of Lenia life, includ-
ing the following types:

◼ Bilateral  symmetry  (dihedral  group  D1)  mostly  in  segmented  and

swarm architectures (O, S, P, Ct, U, K; G, Q).

◼ Radial  symmetry  (dihedral  group  Dn)  is  geometrically  rotational  plus

reflectional  symmetry,  caused  by  bilateral  repeating  units  in  radial
architecture (R, L, F, E). 

◼ Rotational symmetry (cyclic group Cn) is geometrically rotational with-

out  reflectional  symmetry,  caused  by  asymmetric  repeating  units  in
radial architecture (D, R, L) (Figure 10(h)). 

◼ Spherical  symmetry  (orthogonal  group  O(2))  is  a  special  case  of  radial
symmetry (C). 

◼ Secondary symmetries: 

◼ Spiral  symmetry  is  secondary  rotational  symmetry  derived  from
twisted bilaterals (H, V). 

◼ Biradial  symmetry  is  secondary  bilateral  symmetry  derived  from
radials (B, R, E). 

◼ Deformed  bilateral  symmetry  is  bilateral  with  heavy  asymmetry
(e.g., gyrating species in O, S, G, Q). 

◼ No symmetry in amorphous species (A). 

Asymmetry  also  plays  a  significant  role  in  shaping  the  life  forms
and  guiding  their  movements,  causing  various  degrees  of  angular
motions  (detailed  in  Section  3.6).  Asymmetry  is  usually  intrinsic  in  a
species,  as  demonstrated  by  experiments  where  a  slightly  asymmetric
form  (e.g.,  Paraptera  pedes,  Echinium  limus)  was  mirrored  into  per-
fect symmetry and remained metastable, but after the slightest pertur-
bation  (e.g.,  rotate  1°),  it  slowly  restores  to  its  natural  asymmetric
form. 

OrnamentationB.6

Many  detailed  local  patterns  arise  in  higher-rank  species,  owing  to
their complex kernels (Figure 10(d–e, j–l)):

◼ Decoration  is  the  addition  of  tiny  ornaments  (e.g.,  dots,  circles,
crosses), prevalent in class Endokernel. 

◼ Serration  is  a  ripple-like  sinusoidal  boundary  or  pattern,  common  in
classes Exokernel and Mesokernel. 
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◼ Caudation  is  a  tail-like  structure  behind  a  long-chain  life  form  (e.g.,  P,
K, U), akin to “tag-along” in GoL. 

◼ Liquefaction is the degradation of an otherwise regular structure into a
chaotic “liquified” tail. 

Case StudyC.

In  previous  sections,  we  outlined  the  general  characterizations  of
Lenia  from  various  perspectives.  Here  we  combine  these  aspects  in  a
focused  study  of  one  representative  genus—Paraptera  (P4)—as  a
demonstration of concrete qualitative and quantitative analysis.

The Unit-4 GroupC.1

Paraptera (P4) is closely related to two other genera, Parorbium (O4)
and Tetrascutium (S4); they comprise the rank-1, unit-4 group.

In the μ–σ map (Figure C.1), their niches comprise the Parorbium-
Paraptera-Tetrascutium  (O4-P4-S4)  complex.  The  narrow  bridge
between O4 and P4 indicates possible continuous transformation, and
the  agreement  between  the  small  tip  of  P4  and  S4  suggests  a  remote
relationship.  Species  were  isolated  using  allometric  methods
(Figure  C.2,  Table  4),  verified  in  simulation  and  assigned  new  names
(Table C.1). 

Figure C.1. μ–σ  map  of  the  unit-4  group,  showing  the  prominent  Parorbium-
Paraptera-Tetrascutium  complex.  Total  16011  loci.  The  red  dotted  line
marks the cross-sectional study (Figure C.3).
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Species   Morphology Behavior

O4 Genus Parorbium (Family Orbidae)

O4d Po. dividuus Two parallel orbs, 
separated 

T  translocating 

O4a Po. adhaerens Two parallel orbs, 
adhered 

T 

P4 Genus Paraptera (Family Pterifera)

P4o* P. orbis * Concave, twin orboid 

wings 
T 

P4c* P. cavus * Concave, twin orboid 

wings 
T 

P4a* P. arcus * Convex, twin scutoid 

wings 
T 

P4s* P. sinus * Sinusoidal, orboid + 

scutoid wings 
TD*  deflected 

P4*l P. * labens Bilateral TF  sliding 

P4*s P. * saliens Bilateral TO  jumping 

P4*p P. * pedes Bilateral with slight 
asymmetry 

TA  walking 

P4*v P. * valvatus Scutidae-like, twin wings, 
valving 

TO  valving 

P4**f P. * * furiosus Occasional stretched wing TC*  chaotic 

S4 Genus Tetrascutium (Family Scutidae)

S4s T. solidus Four fused scuta, solid TF  sliding 

S4v T. valvatus Four fused scuta, valving TO  valving 

Table C.1.Non-exhaustive  list  of  species  identified  in  the  unit-4  group.  (*  

combinations are possible, e.g., P4spf with behavior TCDA).

Figure C.2.Allometric  charts  of  various  measures  for  the  unit-4  family.  Total
16 011  loci,  300  time  steps  (t  30s)  per  locus.  (a)  Linear  speed  sm  versus

mass m, similar to the μ–σ map flipped. (b) Mass variability s(m) versus mass
m,  isolates  jumping  (TO)  species  P4cs  and  P4as.  (c)  Angular  speed  variability

s(ωm) versus mass m, isolates walking (TA) species P4cp and P4ap.
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Cross-Sectional StudyC.2

In  P4,  a  cross  section  at  μ  0.3  was  further  investigated,  where  five

species  exist  in σ ∈ 0.0393, 0.0515  (Figure  C.1  red  dotted  line,

Table  C.2).  Their  behavioral  traits  were  assessed  via  cross-sectional
charts  and  snapshot  phase  space  trajectories  (Figure  C.3,  see  also
Figure 11(e–i)). 

At higher σ values, Paraptera arcus saliens (P4as) has high m vari-
ability  and  near  zero  mΔ,  corresponding  to  its  jumping  behavior  and

perfect  bilateral  symmetry  (locus  a).  P.  cavus  pedes  (P4cp)  has  high

mΔ  variability,  matching  its  walking  behavior  and  alternating  asym-

metry (locus d). 
Just  outside  the  coexistence  of  P4as  and  P4cp  over

σ ∈ 0.0468, 0.0483,  they  slowly  transform  into  each  other,  as

shown  by  the  spiral  phase  space  trajectories  (loci  b,  c).  Similarly  for
P4cp and P4sp (locus f). 

Irregularity  and  chaos  arise  at  lower  σ.  For  P.  sinus  pedes  (P4sp),
nonzero  mΔ  indicates  deflected  movement  and  asymmetry  (locus  g).

For P. sinus pedes furiosus (P4spf), chaotic phase space trajectory indi-
cates chaotic movement and deformation (locus h). 

At  the  edge  of  chaoticity,  P.  sinus  pedes  rupturus  (P4spr)  has  even
higher  and  more  rugged  variability  and  often  encounters  episodes  of
acute  deformation  but  eventually  recovers  (locus  i).  Outside  the  σ

lower bound, the pattern fails to recover and finally disintegrates. 

Species  σ Range Morphology and Behavior

P4as P. arcus saliens 0.0468, 0.0515 convex, jumping (TO) 

P4cp P. cavus pedes 0.0412, 0.0483 concave, walking (TA) 

P4sp P. sinus pedes 0.0404, 0.0414 sinusoidal, deflected 

walking (TDA)

P4spf P. s. p. furiosus 0.0400, 0.0403 like previous plus 
chaotic (TCDSA)

P4spr P. s. p. rupturus 0.0393, 0.0399 like previous plus fragile 

Table C.2. List of Paraptera species in the cross section μ  0.3.
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(a)

(b)

Figure C.3.Cross-sectional  charts  at μ  0.3, σ ∈ 0.0393, 0.0515  in  genus
Paraptera.  200  time  steps  (t  20s)  per  locus  (see  Table  C.2  for  species
codes). (a) Mass m versus parameter σ, insets: growth g versus mass m phase
space  trajectories  at  loci  a–i.  (b)  Mass  asymmetry  mΔ  versus  parameter  σ,

insets:  linear  speed  sm  versus  angular  speed  ωm  phase  space  trajectories  at

loci�a–i.

More on the Nature of LeniaD.

Quasi PeriodicityD.1

Unlike GoL, where a recurrent pattern returns to the exact same pat-
tern after an exact period of time, a recurrent pattern in Lenia returns
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to  similar  patterns  after  slightly  irregular  periods  or  quasi  periods,
probably normally distributed. Lenia has various types of periodicity:

Aperiodic: in transient non-recurrent patterns1.

Quasi periodic: in quasi stable, stable or metastable patterns2.

Chaotic: with widespread quasi period distribution3.

Markovian: each template has its own type of periodicity4.

Principally,  in  discrete  Lenia,  there  are  a  finite,  albeit  astronomi-

cally  large,  number  of  possible  configurations  ℒ.  Given  enough

time,  a  recurrent  pattern  would  eventually  return  to  the  exact  same
configuration  (strictly  periodic),  an  argument  not  unlike  Nietzsche’s
“eternal recurrence,” although there would be numerous approximate
recurrences  between  two  exact  recurrences.  In  continuous  Lenia,
exact recurrence may even be impossible. 

PlasticityD.2

Given  the  fuzziness  and  irregularity,  Lenia  patterns  are  surprisingly
resilient and exhibit phenotypic plasticity. By elastically adjusting mor-
phology  and  behavior,  they  are  able  to  absorb  deformations  and
transformations,  adapt  to  environmental  changes  (parameters  and
rule settings), react to head-to-head collisions and continue to survive. 

We  propose  a  speculative  mechanism  for  the  plasticity  (also  self-
organization  and  self-regulation  in  general)  as  the  kernel  resonance
hypothesis  (Figure  D.1).  A  network  of  potential  peaks  can  be
observed  in  the  potential  distribution.  The  peaks  are  formed  by  the
overlapping  or  “resonance”  of  kernel  rings  cast  by  various  mass
lumps; in turn, the locations of the mass lumps are determined by the
network  of  peaks.  In  this  way,  the  mass  lumps  influence  each  other
reciprocally  and  self-organize  into  structures,  providing  the  basis  of
morphogenesis. 

Kernel  resonance  is  dynamic  over  time  and  may  even  be  self-regu-
lating,  providing  the  basis  of  homeostasis.  Plasticity  may  stem  from
the  static  buffering  and  dynamical  flexibility  provided  by  such  mass-
potential-mass feedback loop. 
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Figure D.1.Different  views  of  calculation  intermediates.  (a)  Configuration  At,
(b)  potential  distribution  Ut,  and  (c)  kernel  K.  Notice  one  larger  and  six
smaller  potential  peaks  (b:  dark  spots)  possibly  formed  by  kernel  resonance,
and the corresponding inner spaces (a: white areas).

ComputabilityD.3

GoL,  ECA  rule  110,  and  LtL  have  been  demonstrated  to  be  capable
of  universal  computation  [16,  19,  20].  The  proof  of  Turing  univer-
sality of a CA requires searching for “glider gun” patterns that period-
ically  emit  “gliders”  (i.e.,  small  moving  solitons),  designing  precise
circuits  orchestrated  by  glider  collisions  and  assembling  them  into
logic  gates,  memory  registers  and  eventually  Turing  machines  [21].
However, this may be difficult in Lenia due to the imprecise nature of
pattern  movements  and  collisions,  and  the  lack  of  pattern-emitting
configurations.

That  said,  particle  collisions  in  Lenia,  especially  among  Orbium
instances, are worth further experimentation and analysis. These have
been  done  for  classical  CAs  (GoL  and  ECA  rule  100)  qualitatively
[22]  and  quantitatively  using,  for  example,  algorithmic  information
dynamics [23]. 

Future WorkE.

Open QuestionsE.1

Here are a few open questions we hope to answer:

What  are  the  enabling  factors  and  mechanisms  of  how  self-organiza-
tion,  self-regulation,  self-direction,  adaptability  and  so  on  emerge  in
Lenia? 

1.

How  do  interesting  phenomena  like  symmetry,  alternation,  meta-
merism, metamorphosis, particle collision and so on arise in Lenia? 

2.

How is Lenia related to biological life and other forms of artificial life? 3.
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Can Lenia life be classified objectively and systematically?4.

Does continuous Lenia exist as the continuum limit of discrete Lenia? If
so, do corresponding “ideal” life forms exist there? 

5.

Is Lenia Turing-complete and capable of universal computation? 6.

Is Lenia capable of open-ended evolution that generates unlimited nov-
elty and complexity? 

7.

Do self-replicating and pattern-emitting life forms exist in Lenia?8.

Do life forms exist in other variants of Lenia (e.g., three dimensional)? 9.

To  answer  these  questions,  the  following  approaches  to  future
work are suggested. 

More Species DataE.2

For  the  sheer  joy  of  discovering  new  species  and  for  further  under-
standing Lenia and artificial life, we need better capabilities in species
discovery and identification.

Automatic and accurate species identification could be achieved via
computer  vision  and  pattern  recognition  using  machine  learning  or
deep  learning  techniques,  for  example,  training  convolutional  neural
networks  (CNNs)  with  patterns,  or  recurrent  neural  networks
(RNNs) with time series of measures. 

Interactive  evolutionary  computation  (IEC)  currently  in  use  for
new  species  discovery  could  be  advanced  to  allow  crowdsourcing.
Web  or  mobile  applications  with  an  intuitive  interface  would  allow
online  users  to  simulate,  mutate,  select  and  share  interesting  patterns
(cf.,  Picbreeder  [24],  Ganbreeder  [25]).  Web  performance  and
functionality  could  be  improved  using  WebAssembly,  OpenGL,
TensorFlow.js and other programs. 

Alternatively,  evolutionary  computation  (EC)  and  similar  method-
ologies  could  be  used  for  automatic,  efficient  exploration  of  the
search  space,  as  has  been  successfully  used  for  evolving  new  body
parts or body plans [6, 3, 26]. Patterns could be represented in genetic
(indirect)  encoding  using  a  compositional  pattern-producing  network
(CPPN)  [27]  or  Bezier  splines  [28],  which  are  then  evolved  using
genetic  algorithms  like  NeuroEvolution  of  Augmenting  Topologies
(NEAT)  [29].  Novelty-driven  and  curiosity-driven  algorithms  are
promising approaches [30–32]. 

Better Data AnalysisE.3

Grid  traversal  of  the  parameter  space  (depth-first  or  breadth-first
search)  is  still  useful  in  collecting  statistical  data,  but  it  needs  more
reliable  algorithms,  especially  for  high-rank  metamorphosis-prone
species.
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All  data  collected  from  automation  or  crowdsourcing  would  be
stored  in  a  central  database  for  further  analysis.  Using  well-estab-
lished  techniques  in  related  scientific  disciplines,  the  data  could  be
used  for  dynamical  systems  analysis  (e.g.,  quasi  period  distribution,
Lyapunov  exponents,  transition  probabilities  matrix),  shape  analysis
(computational  anatomy,  statistical  shape  analysis,  algorithmic  com-
plexity  [33]),  time-series  analysis  (cf.,  in  astronomy  [34])  and  auto-
matic classification (unsupervised or semi-supervised learning). 

Variants and GeneralizationsE.4

We  could  also  explore  variants  and  further  generalizations  of  Lenia,
for  example,  higher-dimensional  spaces  (e.g.,  three  dimensional)  [13,
35, 36]; different kinds of grids (e.g., hexagonal, Penrose tiling, irregu-
lar  mesh)  [37–39];  different  structures  of  kernel  (e.g.,  non-concentric
rings);  and  other  updating  rules  (e.g.,  asynchronous,  heterogeneous,
stochastic) [40–42].

Artificial Life and Artificial IntelligenceE.5

It  has  been  demonstrated  that  Lenia  shows  a  few  signs  of  a  living
system:

◼ Self-organization: patterns develop well-defined structures. 

◼ Self-regulation: patterns maintain dynamical equilibria via oscillation. 

◼ Self-direction: patterns move consistently through space. 

◼ Adaptability: patterns adapt to changes via plasticity. 

◼ Evolvability:  patterns  evolve  via  manual  operations  and  potentially
genetic algorithms. 

We  should  investigate  whether  these  are  merely  superficial  resem-
blances  with  biological  life  or  are  indications  of  deeper  connections.
In the latter case, Lenia could contribute to the endeavors of artificial
life in attempting to “understand the essential general properties of liv-
ing  systems  by  synthesizing  life-like  behavior  in  software”  [43],  or
could even add to the debate about the definitions of life as discussed
in  astrobiology  and  virology  [44,  45].  In  the  former  case,  Lenia  can
still  be  regarded  as  a  “mental  exercise”  on  how  to  study  a  complex
system using various methodologies. 

Lenia  could  also  serve  as  a  “machine  exercise”  to  provide  a  sub-
strate  or  test  bed  for  parallel  computing,  artificial  life  and  artificial
intelligence.  The  heavy  demand  in  matrix  calculation  and  pattern
recognition could act as a benchmark for machine learning and hard-
ware  acceleration;  the  huge  search  space  of  patterns,  possibly  in
higher  dimensions,  could  act  as  a  playground  for  evolutionary  algo-
rithms  in  the  quest  of  algorithmizing  and  ultimately  understanding
open-ended evolution [46]. 
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