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An  enhanced  version  of  the  Wireworld  cellular  automaton  called
Wireworld++  is  introduced.  It  can  be  considered  as  a  generalization  of
Wireworld  suitable  for  modeling  digital  electronic  circuits  that  have
intersections  of  unconnected  wires.  As  most  electronic  circuits  except
trivial ones have wire crossings, Wireworld++ is a more convenient cel-
lular  automaton  for  modeling  digital  electronics  than  the  conventional
Wireworld.  Wireworld++  is  two  dimensional;  it  has  a  small  number  of
states  and  simple  and  intuitive  rules.  Despite  that,  it  allows  simulation
of three-dimensional elements of digital circuits, for instance, wire cross-
ings  or  electronic  components  placed  on  both  sides  of  printed  circuit
boards.  The  key  electronic  parts,  such  as  logic  gates,  implemented  in
Wireworld++  exhibit  more  symmetry  and  utilize  fewer  cells  than  their
Wireworld  counterparts.  Wireworld++  can  also  be  applied  to  simula-
tion  of  computing  devices  in  a  sub-excitable,  light-sensitive  Belousov–
Zhabotinsky medium organized in a rectangular grid of vesicles. 
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Introduction1.

Wireworld is a cellular automaton that can simulate digital electronic
circuits. It was invented by Silverman in 1987 (e.g., [1]) and later pop-
ularized  by  Dewdney  [2].  As  in  the  case  of  another  famous  cellular
automaton—Conway’s  Game  of  Life  [3]—complex  dynamics  arise  in
Wireworld  from  very  simple  rules  and  a  small  number  of  states.  Like
the Game of Life, Wireworld is Turing complete.

Wireworld  is  defined  on  a  two-dimensional  rectangular  grid.  Each
cell  can  be  in  one  of  four  different  states:  empty,  electron  head,  elec-
tron tail and conductor. The state of each cell at the next moment of
time is determined by its current state and the states of the cells in its
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Moore  neighborhood.  The  Moore  neighborhood  consists  of  a  central
cell  and  the  eight  cells  that  surround  it  (e.g.,  [4]).  The  cells  change
their states according to the following rules: 

Empty cells always stay empty. 1.

If a cell is an electron head, its next state will be an electron tail. 2.

If a cell is an electron tail, its next state will be a conductor cell. 3.

A  conductor  cell  becomes  an  electron  head  if  one  or  two  of  the  neigh-
boring  cells  are  electron  heads.  If  a  conductor  cell  has  fewer  than  one
or  more  than  two  neighbors  that  are  electron  heads,  it  remains  a
conductor. 

4.

Wireworld  contains  all  elements  necessary  to  simulate  any  digital
device.  Data  in  Wireworld  is  represented  by  patterns  of  moving
electrons.  An  electron  consists  of  two  cells—an  electron  head  and  an
electron tail. Using different arrangements of conductor cells, it is pos-
sible  to  construct  structures  that  generate  data,  wires  for  carrying
data  from  one  place  to  another,  valves  for  data  transformation  and
memory  elements.  Logic  gates  and  other  data  processing  construc-
tions  have  been  simulated  in  Wireworld.  The  Wireworld  computer,  a
Turing-complete  computer  implemented  as  a  cellular  automaton,  was
designed  by  Moore,  Owen  and  others  between  1990  and  1992  [5].
Various  other  cellular  automata  can  be  built  within  Wireworld,  for
example, elementary cellular automata [6] and Langton’s Ant [7]. Fig-
ure 1 shows an 8-bit multiplier by Gardner [8]. This figure as well as
all  other  cellular  automata  simulations  in  the  paper  are  generated  in
the Golly software [9, 10]. 

Figure 1. An 8-bit multiplier in Wireworld, designed by Gardner [8].
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Since  the  conventional  Wireworld  is  strictly  two  dimensional,  it
cannot simulate wire crossings in a straightforward way. The problem
of  wire  crossings  is  solved  in  Wireworld  through  a  workaround,  by
employing  specific  configurations  of  conductor  cells  with  two  inputs
and two outputs. These configurations perform the function of a wire
crossing,  provided  that  some  specific  conditions  are  met  for  the  den-
sity  of  electrons  and  the  direction  of  their  movement.  This  method
has  several  drawbacks.  First,  such  configurations  do  not  look  like
intersections.  This  complicates  the  analysis  of  the  circuit.  Second,
these  wire  crossings  behave  like  data  processing  valves,  not  like  sim-
ple  wires.  In  particular,  some  of  them  introduce  delays.  Third,  they
employ  a  lot  of  cells.  These  valves  are  just  artifacts  that  arise  from
dimensionality reduction. 

To  address  these  drawbacks,  we  introduce  a  new  cellular  automa-
ton,  Wireworld++.  Conceptually,  Wireworld++  is  a  generalization  of
the conventional Wireworld to the cases where all circuit elements do
not  have  to  lie  inside  a  single  two-dimensional  circuit  board.  Jumper
wires,  multilayered  conductive  tracks  and  stacking  of  components  on
top  of  each  other  are  naturally  modeled  in  Wireworld++.  In  spite  of
the  presence  of  these  nonplanar  elements,  Wireworld++  is  a  two-
dimensional cellular automaton. 

Nonplanar  digital  circuits  are  ubiquitous.  Figure  2  shows  a  simple
example of a nonplanar circuit, a 4-bit barrel shifter—one of the stan-
dard combinational components of microcontrollers and microproces-
sors. Its nonplanarity can be proved using Kuratowski’s theorem [11],
which says that a finite graph is planar if and only if it does not con-
tain  a  subgraph  that  is  a  subdivision  of  K5  (the  complete  graph  on

five  vertices)  or  K3, 3  (complete  bipartite  graph  on  six  vertices,  three

of which connect to each of the other three). This circuit can be mod-
eled  by  a  graph  shown  in  Figure  3  where  components  (multiplexers)
are  represented  by  squares,  while  metallic  interconnections  are  repre-
sented  by  dots.  The  graph  in  Figure  3  is  a  complete  bipartite  graph
K4, 4. It contains K3, 3 subgraphs, therefore it is nonplanar. 

Figure 2. A 4-bit barrel shifter implemented using 4-to-1 multiplexers [12].
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Multiplexers  in  Figure  2  are  not  elementary  components.  They  are
composed  of  switches,  which  nowadays  are  usually  transistors.  If  we
consider electronic circuits at a switch level, then we see that even sim-
pler  circuits  are  not  planar.  For  example,  consider  an  XOR  gate,
implemented  in  the  CMOS  logic  family.  The  circuit  is  shown  in  Fig-
ure  4.  It  can  be  modeled  by  a  bipartite  graph  in  the  same  way  as  the
previous example. Figure 5 shows that this graph contains a subgraph
that  is  a  subdivision  of  K3, 3.  Therefore,  this  circuit  is  nonplanar

according  to  Kuratowski’s  theorem.  Modern  integrated  circuits  may
contain thousands of XOR gates as well as other, more complex non-
planar blocks. Even though the individual devices (transistors, capaci-
tors,  resistors,  etc.)  in  integrated  circuits  are  patterned  on  a  single
plane  in  a  semiconductor  wafer,  metallic  interconnections  between
them are organized in several layers isolated from each other by insu-
lating layers [13, 14]. 

Figure 3. A  graph  that  models  the  circuit  from  Figure  2.  Components
(multiplexers) are represented by squares. Metallic interconnections are repre-
sented by dots.

Figure 4. A CMOS XOR gate [12].
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Figure 5. A  graph  that  models:  (a)  the  XOR  gate  from  Figure  4;  and  (b)  its
subgraph that is a subdivision of K3, 3.

Uniform Streams of Electrons2.

In  this  section,  we  outline  a  few  concepts  required  for  the  rest  of  the
paper.

A  wire  is  a  sequence  of  conductor  cells  such  that  any  pattern  of
electrons  is  preserved  while  moving  along  this  sequence.  A  wire  can
be  used  for  carrying  data  from  the  place  where  the  data  is  generated
to the place where it is transformed. 

A  stream  of  Wireworld  electrons  moving  along  a  wire  is  called  a
uniform  stream  if  it  consists  of  electrons  separated  by  the  same  dis-
tance. Such a stream can, for example, be generated by a clock, which
is  usually  a  circular  structure  with  one  or  more  electrons  circling
around  it.  Clocks  have  other  forms  as  well.  The  period  of  a  uniform
stream  of  electrons  is  calculated  as  the  number  of  cells  between  two
subsequent  electron  heads  in  the  stream  (excluding  the  heads  them-
selves) plus one. Because each electron occupies two cells, and at least
one  gap  is  necessary  between  successive  electrons  in  a  stream,  the
smallest possible period is equal to 3. Figure 6 shows uniform streams
of electrons of periods 3, 4 and 6, each generated by its own clock. 

For  simplicity,  we  refer  to  a  uniform  stream  of  a  period  n  as  a
signal  of  period  n.  Different  authors  use  different  terms  for  the  same
concept.  Scherer  calls  it  “n-cycle  data.”  Moore  and  Owen  call  it
“n-micron signal” [5]. Heise uses the term n-tick to denote the period
n [7]. We prefer the term “a signal of period n,” because n quantifies
the  signal  in  relation  to  both  time  and  space.  The  number  n  specifies
the  time  period  of  the  signal,  because  exactly  n  cellular  automaton
generations  pass  between  the  time  moments  when  a  particular  cell  is
in  the  electron  head  state.  If  one  considers  the  stream  of  Wireworld
electrons as a propagating wave, then the period of the wave is equal
to  n.  Here,  electron  heads  play  the  role  of  crests  or  troughs.
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Alternatively,  the  number  n  is  equal  to  the  wavelength  of  this  wave
measured  in  the  number  of  cells.  This  shows  that  the  same  n  deter-
mines the period of the signal in space. 

Figure 6. Signals of period 3, 4 and 6 (from top to bottom). The electron head
is blue; the electron tail is gray.

A signal of period n can also be thought of as direct current. In this
point  of  view,  n  is  inversely  proportional  to  the  rate  of  the  current.
The  less  n  is,  the  closer  the  electrons  are  to  each  other  and  the  more
electrons  pass  through  a  conductor  cell  per  unit  time,  which  means
the higher the current rate. 

Moore,  Owen  and  coworkers  built  their  Wireworld  computer
using logic gates that work with signals of period 6 [5]. In his original
paper, Dewdney suggested processing signals of period 13 [2]. 

Signals  of  small  periods  tend  to  require  valves  that  include  large
arrangements of conductor cells (see e.g., [15] for comparison of Wire-
world  processing  valves  for  different  n).  This  is  undesirable,  because
the  larger  the  Wireworld  circuit  is,  the  more  possibilities  for  errors,
especially  in  its  implementation  in  unconventional  hardware,  such  as
in  chemical  substances.  One  of  the  goals  in  designing  Wireworld
circuits  is  to  use  a  minimum  number  of  cells  that  fulfill  the  desired
function. Another design goal is minimization of delays in signal prop-
agation. Delays may occur when the signal goes through a processing
valve,  especially  if  the  valve  is  complicated.  Delays  can  also  be  intro-
duced  intentionally  in  order  to  synchronize  two  or  more  signals  that
are  out  of  phase.  In  any  case,  delays  are  undesirable  because  they
slow down processing and increase the number of conductor cells. We
took into account these goals when designing our Wireworld++. 

Wireworld++3.

The cellular automaton that we introduce in this paper, Wireworld++,
was  inspired  by  the  existence  and  ubiquity  of  electronic  circuits  that
have  intersections  of  unconnected  wires.  Even  though  electronic
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circuits  are  sometimes  considered  to  be  two  dimensional,  assembled
on  planar  printed  circuit  boards,  in  reality,  only  the  simplest  circuits
are  strictly  two  dimensional.  A  printed  circuit  board  for  any  nontriv-
ial  electronic  device  has  either  jumper  wires  or  conductive  tracks  on
both  sides.  More  complicated  devices  require  multilayer  boards.  All
digital circuits can be modeled by Wireworld. However, our enhanced
version,  Wireworld++,  models  wire  intersections  and  processing
valves  more  intuitively  and  makes  them  simpler  in  appearance,  as  is
shown in the subsequent sections.

Like  the  conventional  Wireworld,  Wireworld++  is  defined  on  a
two-dimensional rectangular grid. Being two dimensional, it neverthe-
less  can  describe  three-dimensional  elements,  like  wire  crossings  or
multiple components placed on top of each other. Using three-dimen-
sional  automata  for  these  constructions  is  possible,  but  would  result
in computational complexity not justified by the relatively small num-
ber  of  the  points  where  the  third  dimension  is  used.  Instead,  we
decided  to  stay  in  two  dimensions  but  introduce  a  few  extra  states
and  rules  that  are  used  only  in  those  places  where  we  need  the  third
dimension.  A  similar  approach  and  justification  was  employed  in  the
work  by  Feijs  in  which  he  designed  two-dimensional  cellular
automata for simulating analog electronics [16]. 

The state space of Wireworld++ consists of the following states: 

Empty 1.

Strong head 2.

Strong tail 3.

Strong conductor 4.

Weak head 5.

Weak tail 6.

Weak conductor 7.

The  first  four  states  in  this  list  are  analogous  to  the  states  of  the
conventional  Wireworld.  This  is  also  true  for  states  (1),  (5),  (6)  and
(7).  Any  Wireworld  pattern  can  be  constructed  using  only  states  (1)
through (4), where the empty state and the strong conductor state cor-
respond to Wireworld’s empty and conductor states, while the strong
head  and  the  strong  tail  states  correspond  to  Wireworld’s  electron
head  and  tail.  Alternatively,  any  Wireworld  pattern  can  be  created
using only states (1), (5), (6) and (7). Here again, state (1) can be used
as  Wireworld’s  empty  state,  state  (5)  as  Wireworld’s  electron  head,
state  (6)  as  the  electron  tail  and  (7)  as  the  conductor.  In  order  to
model  intersections  of  unconnected  wires,  both  weak  and  strong
states are required, which will be detailed in the next section. 
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The transition rules of Wireworld++ are as follows: 

Empty cells stay empty. 1.

A  strong  conductor  cell  becomes  a  strong  head  if  one  or  two  of  its
neighboring cells are strong heads. 

2.

A  strong  conductor  cell  becomes  a  strong  head  if  exactly  two  of  its
neighboring cells are weak heads. 

3.

A strong head becomes a strong tail. 4.

A strong tail becomes a strong conductor. 5.

A weak conductor becomes a weak head if one or two of its neighbor-
ing cells are weak heads. 

6.

A weak conductor becomes a weak head if exactly one neighboring cell
is a strong head. 

7.

A weak head becomes a weak tail. 8.

A weak tail becomes a weak conductor. 9.

Rules  (1),  (2),  (4)  and  (5)  are  those  of  conventional  Wireworld
applied to the strong states. Rules (1), (6), (8) and (9) are the conven-
tional  Wireworld  rules  for  the  weak  states.  We  see  that  any  Wire-
world++  pattern  that  contains  only  states  of  the  same  strength  (only
weak or only strong) is a conventional Wireworld pattern. Therefore,
Wireworld  is  a  special  case  of  Wireworld++.  These  rules  imply  that
only  strong  signal  carriers  can  travel  along  strong  wires,  and  only
weak carriers along weak wires. 

Rules  (3)  and  (7)  refer  to  the  interactions  of  strong  and  weak
states. These rules are not symmetric. A strong conductor cell requires
two weak heads to become a strong head, while just one strong head
is  sufficient  for  a  weak  conductor  cell  to  become  a  weak  head.  This
clarifies  the  terms  “strong”  and  “weak.”  The  weak  head  can  be
thought of as two times “weaker” than the strong head, because two
of  them  are  required  to  invoke  a  signal  in  a  strong  conductor.  This
asymmetry  turns  out  to  be  important  for  modeling  three-dimensional
circuits by two-dimensional cellular automata. 

Wireworld++  can  be  thought  of  as  the  result  of  some  algebraic
operation (let us denote it *) on two conventional Wireworlds: 

W++  W *W. (1)

This  operation  takes  the  states  and  the  rules  of  its  operands  and
builds new states and new rules from them. Depending on the opera-
tion * and its operands, the result may have duplicate states and rules,
so only one instance in each duplicate should be retained. In our case,
such  a  duplicate  state  is  the  empty  state,  and  a  duplicate  rule  is  the
rule  that  says  that  the  empty  state  never  changes.  The  result  of  this
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operation  may  also  have  additional  rules  that  specify  what  the  next
state  should  be  when  the  states  from  different  operands  are  in  the
same  neighborhood.  In  our  case,  these  are  rules  (3)  and  (7).  It  seems
natural that Wireworld++ is built only from Wireworlds and no other
cellular  automata,  because  the  same  physical  system  is  simulated  in
both  wires  and  intersections  of  unconnected  wires.  The  intersection
should  not  add  any  new  physics;  it  is  just  two  wires,  one  above  the
other, which is reflected in equation (1). The same line of thought can
be applied not only to intersections of unconnected wires, but also to
electronic  components  (diodes,  transistors,  logic  gates,  multiplexers)
placed  on  top  of  each  other,  for  example,  on  both  sides  of  a  printed
circuit  board.  Theoretically,  this  could  be  generalized  to  intersections
of more than two wires at the same point, in which case the resulting
cellular automaton would be 

W++  W *W *⋯ *W. (2)

However,  the  number  of  states  and  rules  for  such  an  automaton
would be prohibitively high, and it would not bring any advantage in
simulation  of  digital  circuits,  as  intersections  of  more  than  two  wires
are  extremely  rare.  Even  if  they  are  present  in  a  certain  circuit,  they
can be modeled as intersections of pairs of wires in close but separate
points. Furthermore, it turns out to be possible to implement multiple
wire  crossings  at  one  point  in  Wireworld++  constructed  according  to
equation (1), as we will show in the next section. This further dimin-
ishes the necessity of the complicated automaton equation (2). 

We  decided  not  to  use  the  word  “electron”  in  the  names  of  the
Wireworld++  states.  This  is  because  even  in  the  case  of  electric  cur-
rent,  charge  is  not  always  carried  by  moving  electrons.  In  some  sub-
stances  (such  as  electrolytes  or  plasma),  charge  is  carried  by  moving
ions.  Moreover,  the  design  or  analysis  of  electronic  circuits  rarely
requires studying the flow of electrons. In most cases, it is sufficient to
work in terms of voltages and currents described by Kirchhoff’s laws,
Ohm’s law and a few other theorems, without going to lower levels of
physical  abstractions  [16].  There  is  also  research  on  modeling  digital
circuits by cellular automata related to implementations of computing
devices  in  chemical,  biological  or  other  systems  that  are  called
“unconventional”  by  computer  scientists  to  contrast  them  with  con-
ventional  electronics  based  on  semiconductor  technology  (e.g.,  [17,
18]).  Signals  in  those  systems  do  not  have  to  be  carried  by  electrons.
They  can  be  transferred  by  chemical  reactions  or  by  traveling  local-
ized  excitations,  like  in  a  light-sensitive  Belousov–Zhabotinsky  (BZ)
medium  (e.g.,  [19]).  What  is  important  for  a  charge  carrier  is  that  it
moves like a free particle in empty space. When such a carrier is mod-
eled by some totalistic, isotropic cellular automaton, at least two cells
(head  and  tail)  are  required  to  represent  it  moving  in  a  certain
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direction; the direction of the movement can be specified by a directed
line segment starting from the cell that is in the “head” state and end-
ing in the cell that is in the “tail” state. Even though we occasionally
use the word “electron” in this paper for simplicity to denote a signal
carrier, we omit it in the formal definitions and rules. It is possible to
simulate a movement of the signal carrier by a single cell if we employ
nontotalistic  and  nonisotropic  rules  that  take  into  account  the  exact
relative positions of the neighbors (e.g., [20]). Such a rule can be, for
example,  “the  cell  changes  to  a  carrier  state  if  the  cell  to  the  left  is  a
carrier.” However, in this paper we work on a generalization of Wire-
world  that  is  isotropic  and  totalistic,  so  we  decided  to  stay  in  the
same class of cellular automata. 

Wire Crossings4.

In  classical  electronic  design,  when  two  unconnected  wires  cross,  we
assume  that  currents  can  in  principle  flow  along  these  wires  in  any
direction. We also assume that the rate of current can have any value,
and  that  the  currents  in  different  wires  do  not  influence  each  other.
These  assumptions  may  not  always  hold  in  actual  electronic  circuits,
but  attempts  are  being  made  to  minimize  parasitic  influence  of  wires
on each other, and the most appropriate wire thickness is usually cho-
sen for a specific range of currents.

When wire crossings are simulated by cellular automata, additional
complications arise, because wire crossings are modeled by valves that
may not have all the properties of a bunch of nonintersecting conduc-
tors. Some of these valves can model wire crossings only when the cur-
rent  goes  in  one  particular  direction.  Other  valves  model  wire
crossings  when  electrons  flow  only  along  one  of  the  wires,  but  not
when  they  enter  the  intersection  simultaneously  from  two  different
wires. 

A Wireworld wire crossing is called unidirectional if it allows data
to  pass  correctly  only  in  one  direction.  The  crossing  may  not  work
correctly  when  data  is  sent  from  the  other  direction.  A  Wireworld
wire  crossing  is  called  bidirectional  if  it  correctly  passes  the  data  in
both  directions.  A  Wireworld  wire  crossing  is  called  single  channel  if
only  one  stream  of  data  can  pass  through  it  at  any  given  moment  of
time.  A  Wireworld  wire  crossing  is  called  double  channel  if  two
streams of electrons can pass through it simultaneously. 

The  asymmetry  of  the  Wireworld++  rules  allows  constructing  a
wire  crossing  as  shown  in  Figure  7.  Throughout  the  paper,  we  use
lighter  colors  for  the  strong  states  and  darker  colors  for  the  weak
states.  The  wires  consist  only  of  the  strong  conductor  cells.  The  wire
crossing contains only weak conductor cells. That means that we need
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weak cells in those places where the circuit needs the third dimension,
as in the case of wire crossings. 

Figure 8 shows the successive snapshots of a single electron passing
through  the  intersection.  Upon  entering  the  intersection,  the  strong
head  creates  two  weak  heads.  These  two  weak  signal  carriers  move
through  the  intersection  together  and  produce  a  strong  head  in  the
first strong conductor cell after the intersection, according to rule (3).
The weak heads do not affect the wires on the sides because only one
weak  head  touches  each  wire,  whereas,  according  to  rule  (3),  two
weak  heads  are  required  for  a  strong  conductor  cell  to  become  a
strong head. 

Figure 7. A  bidirectional,  single-channel  wire  crossing  for  signals  of  period
n ≥ 4.

Figure 8. The  successive  snapshots  of  a  single  electron  passing  through  the
wire crossing (from left to right, top to bottom).
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This  wire  crossing  does  not  introduce  any  delay  compared  to  a
straight  wire.  It  is  a  single-channel,  bidirectional  crossing  that  works
for signals of period n ≥ 4. To the best of our knowledge, there is no
wire  crossing  in  the  conventional  Wireworld  that  is  so  simple  and
looks so much like a real intersection of unconnected wires. The clos-
est  Wireworld  analog  that  we  could  find  is  a  wire  crossing  shown  in
Figure  9  that  works  for  signals  of  period  n > 4  [15].  However,  this
wire crossing is unidirectional. It allows signals to pass correctly only
from  left  to  right.  Moreover,  it  contains  more  cells  than  our  Wire-
world++ construction, and it looks like a processing valve rather than
a wire crossing. 

Figure 9. A unidirectional Wireworld wire crossing for signals of period n > 4.

The wire crossing in Figure 7 is single channel, so if two signals are
sent  simultaneously  toward  the  intersection  along  the  perpendicular
wires, they will disappear at the square of weak cells. Wireworld elec-
trons also disappear if they travel in the same wire toward each other
and collide. In case two signals arrive simultaneously from two oppo-
site  directions  toward  this  wire  crossing,  they  will  exit  the  square  of
weak  cells  along  the  two  other  wires  perpendicular  to  the  incoming
wires. Because of such behavior, this intersection can be thought of as
two Γ-shaped insulated wires placed close to each other. It is an inter-
esting  feature  of  the  cellular  automata  that  the  same  configuration  of
cells  can  have  different  interpretations  and  serve  different  purposes,
depending on the dynamics around it. 

Figure  10  shows  why  this  wire  crossing  does  not  work  for  signals
of  period  three  but  works  for  signals  of  period  greater  than  or  equal
to  four.  Let  us  send  the  alternating  sequence  101010…  along  one
wire and the sequence 010101… along another wire. The wire cross-
ing  is  single  channel,  but  in  this  case  the  electrons  do  not  enter  the
wire  crossing  simultaneously,  so  it  is  expected  to  work  properly.
When a logic one enters the wire crossing from one wire, a logic zero
enters  it  from  another  wire,  and  vice  versa.  In  Figure  10,  we  see  that
when  the  period  of  the  signals  is  three,  both  signals  change  after  the
wire  crossing,  while  they  pass  undisturbed  when  their  period  is  four.
The  reason  is  that  the  square  of  weak  cells  can  handle  correctly  only
one signal; thus the period should be large enough for both signals to
pass without interference. 
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Figure 10. The  signal  101 010…  travels  along  one  wire,  and  the  signal
010 101…  travels  along  the  perpendicular  wire.  The  signals  in  the  configura-
tion on the left have period n  3. They cannot pass through the intersection
correctly. The signals in the configuration on the right have period n  4. The
wire crossing works perfectly for them.

We can now build wire crossings that work only for signals whose
period  is  not  less  than  a  specified  number  n.  For  example,  Figure  11
shows two wire crossings; one of them (on the left) works only for sig-
nals of period n ≥ 5, while the other one (on the right) works only for
signals  of  period  n ≥ 6.  Both  wire  crossings  are  bidirectional,  single
channel.  It  is  straightforward  to  generalize  this  pattern  for  making
wire  crossings  that  work  only  for  larger  periods.  One  just  has  to
increase the perimeter of the central figure made of weak cells. These
patterns will be used later in this paper as building blocks for making
other constructs. We see that creating wire crossings for signals of dif-
ferent  periods  follows  a  well-defined  pattern  in  Wireworld++.  We
have not seen in the literature any such patterns in conventional Wire-
world.  Wire  crossings  in  Wireworld  are  completely  different  for  each
period n. We do not claim that it is impossible to find such a pattern
in Wireworld, but we doubt that it will be as simple and elegant as in
Wireworld++. 

The  passage  of  time  for  these  crossings  depends  on  their  size.  The
crossing on the left-hand side of Figure 11 has zero delay compared to
the  straight  wire,  while  the  crossing  on  the  right  has  a  delay  equal  to
one  time  cycle.  Larger  crossings  have  a  delay  equal  to  n - 5,  where  n
is  the  smallest  period  of  the  signal  that  the  crossing  allows  to  pass
without  errors.  If  two  signals  are  sent  simultaneously  toward  any  of
these constructions along the perpendicular wires, they will disappear
at  the  central  shape  of  weak  cells.  In  case  two  signals  enter
simultaneously  from  two  opposite  directions,  they  will  exit  the
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intersection  along  the  two  other  wires  perpendicular  to  the  incoming
wires. 

Figure 11. Wire  crossings  that  work  only  for  signals  whose  period  is  not  less
than  a  specified  number  n.  On  the  left  is  a  wire  crossing  that  works  only  for
signals of period n ≥ 5. On the right is a wire crossing that works only for the
signals of period n ≥ 6. The generalization for larger n is straightforward.

As  an  example  of  modeling  multiple  unconnected  wires  that  cross
in  one  point,  consider  a  single  channel,  bidirectional  wire  crossing  in
Figure  12.  A  signal  can  enter  any  wire  and  will  exit  the  wire  on  the
opposite  side  of  the  crossing.  This  wire  crossing  employs  the  same
asymmetry of rules for strong and weak states as all the previous wire
crossings:  a  strong  head  appears  only  when  two  weak  heads  collide,
which  happens  at  the  cell  exactly  opposite  to  the  entrance  of  the  sig-
nal  into  the  crossing.  This  wire  crossing  has  no  delay  compared  to  a
straight  wire  for  signals  traveling  along  the  vertical  or  horizontal
wire,  but  has  a  delay  of  three  time  cycles  for  signals  traveling  along
the  diagonal  wires.  As  we  mentioned  in  the  previous  section,  Wire-
world++ constructed algebraically from two instances of Wireworld is
sufficient  for  describing  even  the  situations  where  more  than  two
unconnected wires cross at one point. 

Figure 12. Four unconnected wires cross at one point. This wire crossing is sin-
gle channel, bidirectional.
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The  construction  in  Figure  12  has  interesting  behavior  when  sig-
nals come to it in more than one wire simultaneously. Some examples
are  given  in  Table  1.  In  some  of  those  cases,  it  behaves  like  a  wire
crossing; in others it does not. 

Number of
Entering
Signals

Directions of
Entering Signals

Number
of Exiting
Signals

Directions
of Exiting Signals

2 From the
opposite sides
toward each other.

2 Along the wires
perpendicular to
the entering signals.

2 At 90◦ to each other. 2 One along the
wire that is between
the incoming wires;
the other one along the
opposite wire at 135◦

to the incoming wires.

2 At 45◦ to each other
(neighboring wires).

1 The signal that
travels in the diagonal
wire disappears;
the remaining signal
exits on the opposite side.

2 At 135◦ to each other. 2 At 135◦ to each other
but along different wires.

3 or 5
or 7

Neighboring wires. 1 Opposite to the wire that
is central to the cluster
of incoming signals.

4 Neighboring wires. 1 Along a diagonal wire that
is opposite to the diagonal
incoming signal that is
between horizontal and
vertical incoming signals.

6 Neighboring wires. 1 Along the remaining
nondiagonal wire.

8 All wires. 0 —

Table 1. The behavior of the intersection in Figure 12 when signals come to it
in more than one wire simultaneously.

The  wire  crossings  discussed  so  far  were  single  channel.  Only  one
signal could travel through them at a time. We can take previous con-
structs as building blocks and create double-channel wire crossings. In
Figure  13,  we  present  a  Wireworld++  double-channel  wire  crossing
(on the left), and compare it with its Wireworld analog (on the right)
designed by Scherer. Both wire crossings are unidirectional, work cor-
rectly for signals of period n ≥ 5, and do not introduce any delay com-
pared  to  a  straight  wire.  The  Wireworld++  wire  crossing  has  half  the
conductor cells of its Wireworld counterpart (26 versus 52). Also, the
Wireworld++  version  looks  more  like  a  wire  crossing,  while  the
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Wireworld  version  looks  like  a  valve.  The  directional  asymmetry  of
the  crossing  (the  fact  that  it  is  unidirectional)  is  more  visible  in  the
Wireworld++  case.  Generalization  to  signals  of  larger  periods  is
straightforward and shown in Figure 14. The only difference between
the  wire  crossings  in  Figure  14  is  the  perimeter  of  the  central  figure
made  of  weak  cells,  which  is  uniquely  determined  by  the  smallest
period of the signal that we allow to pass through the crossing. 

Figure 13. A  Wireworld++  double-channel  wire  crossing  (on  the  left),  and  an
analogous  Wireworld  intersection  (on  the  right)  designed  by  Scherer.  Both
wire  crossings  are  unidirectional  and  work  correctly  for  signals  of  period
n ≥ 5. The arrows of different colors show the paths of each signal.

Figure 14. Double-channel  wire  crossings  that  work  for  signals  whose  period
is not less than a specified number n. The smallest period n is uniquely deter-
mined by the perimeter of the central arrangements of weak cells.

Finally,  we  would  like  to  present  a  double-channel,  bidirectional
wire  crossing.  It  is  shown  in  Figure  15  and  is  valid  for  signals  of
period  n ≥ 6.  When  only  one  signal  passes  though  this  wire  crossing
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in  any  of  the  four  possible  directions,  it  has  no  delay  compared  to  a
straight wire. If two signals entering from wires perpendicular to each
other cross it simultaneously, they are delayed one time cycle. 

Figure 15. A  double-channel,  bidirectional  wire  crossing  for  signals  of  period
n ≥ 6.

Diodes and Logic Gates5.

A  Wireworld++  diode  is  shown  in  Figure  16,  where  it  is  compared
with a Wireworld diode.

Figure 16. A Wireworld++ diode (top) and a Wireworld diode (bottom).

Figure  17  shows  a  Wireworld++  AND  gate  for  signals  of  period
n ≥ 3 on the left and a Wireworld AND gate on the right designed by
Scherer [15]. The Wireworld++ version is a winner in all respects. It is
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simple,  clear  to  understand  and  has  no  delay.  Moreover,  the  Wire-
world++ version is constructed only of conductor cells, while the Wire-
world  one  has  to  have  complicated  internal  dynamics  of  circulating
electrons, including a constant supply of electrons entering it from the
opposite  direction  (see  the  rightmost  electron  in  the  figure),  which
makes  it  practically  unusable.  A  more  popular  Wireworld  AND  gate
is shown in Figure 18. It works for signals of period n ≥ 5. Even this
simpler version uses more cells than the Wireworld++ AND gate. The
Wireworld  OR  gate  is  as  simple  as  a  gate  can  be,  so  there  is  no  need
to  invent  an  alternative  version  here.  Wireworld  NOT  gates  are  also
simple. Each NOT gate is specific for a particular period of the signal.
It consists of a clock from Figure 6 producing a signal of period n and
an  interfering  input  that  quenches  this  signal.  These  interfering  pat-
terns  are  different  in  Wireworld  and  Wireworld++  but  Wireworld++
versions are not much simpler. Just for reference, we show NOT gates
for n  4 and n  6 for both cellular automata in Figure 19. 

Figure 17. A Wireworld++ AND gate (left) and a Wireworld AND gate (right)
for signals of period n ≥ 3.

Figure 18. A Wireworld AND gate for signals of period n ≥ 5.

36 V. Gladkikh and A. Nigay

Complex Systems, 27 © 2018



Figure 19. Wireworld++  NOT  gates  (left)  and  Wireworld  NOT  gates  (right).
The gates in the top row are for signals of period n  4. The gates in the bot-
tom row are for signals of period n  6.

Figure  20  shows  a  Wireworld++  XOR  gate  for  n ≥ 3  on  the  left
together  with  two  Wireworld  XOR  gates.  The  gate  in  the  center,
designed  by  Heise,  works  for  n ≥ 3  [7],  while  the  gate  on  the  right,
designed  by  Walraet  [21],  works  for  n ≥ 5.  The  Wireworld++  XOR
gate uses fewer cells than all its Wireworld counterparts. 

Using these logic gates, any digital device can be simulated. 

Figure 20. A  Wireworld++  XOR  gate  for  signals  of  period  n ≥ 3  (left)  and
Wireworld XOR gates. The gate in the center works for n ≥ 3, while the gate
on the right works for n ≥ 5.
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Similarities between Wireworld++ and Interacting Wave 

Fragments of Belousov–Zhabotinsky Oscillating Reaction
6.

There  are  certain  similarities  between  logic  gates  simulated  in  Wire-
world++  and  the  corresponding  gates  implemented  by  colliding  wave
fragments in a sub-excitable, light-sensitive BZ medium. The BZ reac-
tion is an oscillating chemical reaction [22, 23]. Under a specific, nar-
row  range  of  illumination,  perturbations  of  the  ruthenium-catalyzed
BZ  medium  lead  to  the  formation  of  traveling  wave  fragments  [24].
These  wave  fragments  preserve  their  shapes  and  velocity  for  some
time,  so  they  behave  like  quasi-particles  [25,  26].  These  traveling
quasi-particles  can  be  used  as  signal  carriers,  and  the  results  of  their
collisions can be interpreted as computations [27–29]. Traveling wave
fragments are unstable, however. They either collapse or expand after
a  short  time.  One  approach  to  mitigating  this  instability  is  to  divide
the  reacting  medium  into  compartments  so  small  that  a  wave  packet
is stable during the time it travels across the compartment. These com-
partments are called BZ vesicles [30, 31]. Each BZ vesicle is enclosed
in a membrane impassable for wave packets. A pore between two BZ
vesicles  is  formed  at  the  place  where  they  are  in  contact  with  each
other.  The  diameter  of  the  pore  should  be  such  that  the  wave  frag-
ment, entering into the vesicle, is stable while traveling across the vesi-
cle  along  a  straight  line.  While  inside  the  vesicle,  the  wave  fragment
may  collide  with  other  wave  fragments  that  entered  through  other
pores. The result of this collision may be one or more wave fragments
that exit the vesicle through yet other pores. Arranging BZ vesicles in
specific  configurations,  it  is  possible  to  build  logic  gates  and  more
complex  computing  devices.  There  are  many  possible  ways  to  imple-
ment  a  particular  gate.  All  vesicles  can  either  be  of  the  same  size  or
they can be of different sizes. They can be arranged either in a regular
or an irregular grid. The pore efficiency may either be the same for all
vesicles or different for each pair of vesicles. Here, we compare Wire-
world++  logic  gates  with  the  gates  made  of  orthogonal  arrangements
of  uniform-sized  BZ  vesicles  [32].  We  notice  that  both  BZ  and
Wireworld++ gates are constructed using the same ideas. Consider the
comparison  of  the  NOT  gates  implemented  in  each  of  the  two  sys-
tems in Figure 21. The BZ NOT gate consists of a constant source of
excitations  (permanent  logic  one)  in  the  topmost  disk.  This  is  analo-
gous  to  the  clock  (also  a  signal  source)  in  Wireworld++.  The  central
vesicle,  in  which  the  reaction  takes  place,  corresponds  to  the  central
arrangement  of  weak  cells  in  the  Wireworld++  version.  When  the
input is zero (the left-hand side of Figure 21), the output is one. When
the  input  is  one  (the  right-hand  side  of  Figure  21),  then  both  in  the
BZ  and  Wireworld++  cases  this  input  collides  with  the  permanent
source  signal,  and  the  result  of  this  collision  misses  the  downward
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passage to the exit. Instead, the resulting signal carrier hits the wall of
the vesicle in the BZ case or a dead end in the Wireworld++ case at 45
degrees from the exit and disappears. 

Figure 21. Similarities between implementations of a NOT gate in the BZ reac-
tion [32] and in Wireworld++.

Let  us  now  consider  a  NAND  gate.  It  is  shown  in  Figure  22  for
both the BZ reaction and Wireworld++. The gates in both systems are
again  in  complete  analogy  with  each  other.  When  at  least  one  of  the
inputs  a  or  b  in  the  upper  row  of  the  vesicles  is  zero,  then  the  signal
from  the  permanent  source  on  the  right  passes  unperturbed  toward
the  output  c.  When  both  a  and  b  are  ones,  then  the  signals  collide  in
the  upper  central  cell.  The  result  of  this  collision  propagates  down-
ward and collides with the permanent source. The resulting wave hits
the  wall  of  the  vesicle  at  45  degrees  below  the  pore  and  disappears.
Exactly  the  same  happens  in  Wireworld++,  where  there  are  also  two
separate arrangements of weak cells corresponding to two BZ vesicles
in which collisions happen. 

Figure 22. Similarities  between  implementations  of  a  NAND  gate  in  the  BZ
reaction [32] and in Wireworld++.
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Similar  analogies  can  be  considered  between  other  orthogonally
arranged uniform BZ gates and Wireworld++ constructs. Therefore, it
is  possible  to  use  Wireworld++  for  simulating  computing  devices  in  a
sub-excitable, light-sensitive BZ medium. 

Conclusions and Future Work7.

In  this  paper  we  introduced  Wireworld++,  a  cellular  automaton  that
is  more  convenient  for  simulating  digital  electronic  circuits  than  con-
ventional  Wireworld,  especially  when  circuits  have  intersections  of
unconnected  wires.  Most  logic  gates  implemented  in  Wireworld++
utilize  fewer  cells  than  similar  gates  in  Wireworld.  We  also  showed
that  there  is  close  analogy  in  the  construction  and  behavior  of  Wire-
world++  gates  and  corresponding  gates  implemented  by  colliding
wave  fragments  in  a  sub-excitable,  light-sensitive  Belousov–
Zhabotinsky  (BZ)  medium.  Therefore,  Wireworld++  can  be  used  for
simulating  computations  in  reaction-diffusion  systems  organized  in  a
square grid of vesicles.

Most cellular automata models of digital computations in reaction-
diffusion  systems  use  a  hexagonal  grid.  There  are  cellular  automata
for  modeling  logic  gates  on  a  hexagonal  grid,  a  well-known  example
being  the  spiral  rule  cellular  automaton  [33–37].  We  have  not  seen
any  applications  of  cellular  automata  for  modeling  BZ  gates  on  a
square  grid,  and  we  think  that  Wireworld++  is  suitable  for  this  role.
Possible  future  work  would  be  generalization  of  Wireworld++  to  the
hexagonal grid, because the design of Wireworld-type automata is dif-
ferent from the spiral rule cellular automaton. It would therefore offer
an alternative simulation scheme of these systems. Computing by trav-
eling wave fragments in networks of BZ vesicles with irregular diame-
ters,  connection  angles  and  pore  efficiencies  has  also  been  studied
[32]. Generalization of Wireworld++ to such grids is another possible
future direction. 

In  our  work,  we  used  the  software  package  Golly  [9].  This  is  very
convenient  software  that  allows  simulation  of  a  wide  variety  of  two-
dimensional  cellular  automata.  However,  it  is  restricted  only  to
square  grids.  Redesign  of  this  software  for  arbitrary  tessellations
would  be  desired.  Feijs  worked  on  simulating  analog  electronics  with
cellular  automata  [16].  His  work  and  ours  can  be  continued  for
design of an automaton capable of simulating both digital and analog
systems,  so  it  could  simulate  analog-to-digital  and  digital-to-analog
converters  and  electronics  based  on  them.  Finally,  both  conventional
Wireworld  and  our  Wireworld++  are  valid  only  for  small  currents,
because  the  smallest  period  of  a  signal  in  these  cellular  automata  is
n  3.  Electronic  circuits  use  thicker  wires  and  proper  insulation  to
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handle  large  currents.  In  Wireworld++,  using  thicker  conductors  still
does not allow signals of period less than 3. Therefore, generalization
to  larger  currents  will  require  creation  of  a  new  automaton  with  its
own states and rules. 
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