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A Multispeed Model for Lattice-Gas Hydrodynamics
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Abstract . A discrete model for two-dimens ional hydrodynam ics is
present ed . Compared to pr evious cellular-automata constructi ons, it
has a richer spectrum of states and is thus closer to molecular dyn am­
ics. Firs t, the model is test ed regarding equilibrium isotropy. Next,
t her mal effects in equilibrium are discussed . Then the lat tice gas
is used to model the two-dimensional incompressib le Nav ier-Stokes
equat ion by performing a Poiseuille flow experiment . T he expec ted
effect of the syste m size on viscosit y is found. For the shear flow
we observe a breakdown of isot ropy- much st ronger than that of the
equilibrium distribution- appearing as a dir ect ion-dependent viscos­
ity. The viscosity is comput ed from t he nonequili brium distributions,
and agreement with the simulat ion results is found.

1. Description of the model

Our la t t ice gas is discrete in space, t ime, and stat e, and lives on a qu adra ti c
lat ti ce. It is known that with t his geome try t he re arise some problems con­
cern ing spurious invariants and isotropy [1, 2], if velocit ies are restrict ed to
v = (± 1, 0) and v = (0, ±1) . The spurious invariants can be eliminate d by
ad ding more veloc it ies , including rest particles with v= 0. It is the purpose
of the present pap er to st udy the extent to which t he anisotropy effects can
be suppress ed by incl uding t he larger velocity spectrum shown in figure 1.
On each site there are 21 allowed single-part icle states that may be eit her
empty or occupied by at mo st one par ticle wit h uni t mass , so 221 micro­
configur ation s are possible on a single site. This exclusion principl e allows
cheap storage and easy handling of data. The time development proceeds as
usual with a t ranslation ste p followed by a collision ste p , each ste p applied
synchrono us ly to all particles. Collisions t ake place between particles on the
same site. P articles cross ing or overtaking during a translati on ste p do not
undergo a collision.

The collision rules are design ed to conserve par t icle number , mom en­
tum, and energy. The qu adruple (N,E ,Px , Py ) defines for each site a local
"macros t a te ." The collision ste p pro ceeds as follows: For each sit e, t he
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Figure 1: Spectrum of velocities. Only velocities in the first quadrant
are indicated by arrows.

macrost ate of the incoming particle configurat ion is compute d. T hen an out­
put configur ation is chosen randomly among all microconfigur at ions com­
patible with this macrost at e. T hese configurat ions are either sto red dir ectly
as bit patterns in a look-up tab le or const ructe d from one of the st ored bit
pat terns by using lattice symmetries or part icle-hole symmetry.

To ret ain microreversibility , it is necessar y to have all microconfigura­
tions that are compat ible wit h an (N,E ,Px , Py ) accessible to the outgoing
particles, if this macrost at e is allowed to undergo a collision . Because of the
combinato rial explosion of microst ates with increasing N, we thus restrict
collisions to sit uat ions wit h N ::::: 5 particles. Accordingly we work with par ­
ticle densiti es (N) ~ 2. Then collisions may take place in almost all cases
and efficient up dating, short mean free paths, and quick relaxation into lo­
cal equilibrium should be guaranteed. Another way to avoid combinatorial
explosion would be t o collide the particles on a site pair -wise and to work
off all pair s, but this would make the collision process comput at ionally more
difficult.

2. The equilibrium distribution

We start with t he maximum ent ropy principle for the occupat ion numbers
ni on a single site, where i = 1, . . . , 21. Here i denotes one of the allowed
tuples (V ix , Viy ) . Under const raints of fixed average values for

21

number of particles per site N Lni (2.1)
i =1

21

momentum per sit e P LVini (2 .2)
i=1
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Figure 2: Test of the Fermi distribution for different system pa­
rameters. The solid lines are the theoretical predictions from equa­
tion (2.4).

21

energy per site E = L e.n;
i = l

(2.3)

with single-part icle energies e, == v;x +V;y E {O, 1, 2, 4, 5}, we obtain a Fermi
function for the occupat ion numbers:

1
n - (2.4)

t - 1 + z exp ((3ci - &Ui)

where z = exp (- (3J-l) and where the Lagran gian multipliers u, iX , and (3 are
functi ons of the conserved qu anti ti es. Noti ce that here and in the following,
E , N , and j3 are average qu an ti ti es per lat ti ce site .

T he occup ation numb ers for different values of E and N and for van ishing
mean momentum j3 were measured and are plotted in figur e 2. For each
choice of N an d E we thermalized a 32 x 16 system at rest and then averaged
over 104 it erations .

Not ice t hat negative temp eratur es are allowed since there is an upper
bound for the part icle energies. For very low and very high energies per
particle, the Fermi gas is degenerated . But in order to obtain good isotropy
properties, the whole spectrum of dir ecti ons should be excited. In t he fol­
lowing we will assume nearl y equal excit at ion of all states , charac terized
by T == 1/ (3 ~ oo and E ~ Eo == (N/ 21)L i ci . By symmet ry, iX must
vani sh for j3 = 0. To describe low-speed equilibria we restrict ourselves
to small valu es of a . Wi th this par ameter adjustment , then by inser t­
ing equat ion (2.4) into the conservat ion equat ions and by neglectin g terms
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O((E - EO) 2 , P 2(E - Eo) , P 4
) , we get

z _1 + ~ {21 +17 (~ ) 2f} (2.5)

(3 - 4Ng:~ N) {f - :4 p
2
} (2.6)

(21)2 { I _ 71(21)2g [f _ iL p 2] }
Qx(y) 34N(21 - N) 2 34

(21)3 2 2
px(y) - (34)4N3[rPX(y) + spy(x) ]Px(y) (2.7)

with

f == (E - Eo)
335

r == __10_7 + 36_N---,(2..,--1_-,-::--N...:..)
6 (21)2

g ==

s ==

21- 2N

34N(21 - N)
105 N(2 1 - N)

- 6 + 34 (21)2

In contrast to the result s for the hexagonal lattice [3, 4], there is a differ­
ence between the coefficient s rand s that appear in equa t ion (2.7) , reflect ing
the anisotropy of the squa re lat t ice. But this difference is very small. For
equa l excitation we thus could hope tha t anisot ropy is indeed negligible at
low speeds, since moreover its effect ceases for vanishing P . To check the an­
alyt ic result s we performed some simulations with different uniform st ream
velocit ies in direct ions parallel and diagonal to the square lat t ice. T he data
shown in figur es 3 and 4 are for parallel and diagona l flows with N = 2 and
E = 6.476 C::' Eo. For each P we used 104 iterations on a 128 x 64 lat t ice.
In addit ion to the mean populat ions of different single-part icle states, the
figures show solid curves predicted by equations (2.4) through (2.7).

The experiment al data po ints lie well on the curves predicted by theory.
In the following simulations the magni tude of P will be so small « 0.06)
that the above equilibrium anisot ropy should not show up.

3 . A P oi seuille flow experiment

To test t he hydrodynam ic behavior of the model, we simulat ed a channel
flow designed similarly to that describ ed in [5J. A stationary flow is driven
by an average rate (!~.P) of moment um added uniformly to a channel between
two walls. This is done by flipping velocities at randomly chosen sit es and
times. Figure 5 shows all flips used to add moment um for the axis-parallel
flow. !::>.P denotes the unit s of moment um added to the'system when a flip
takes place. In addit ion to the flips shown, all flips obtained by inflections
on the x-axis are used . If at the chosen spac e-time point one or several
flips can be applied , one of them is chosen ran domly; otherwise we go to
the next neighbor downst ream. T hus, at each site a uniform force G =
(!::>.P)/ (system size) is simulated. T he walls an d the force are parallel to the
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F igure 3: Transformat ion of t he Fermi dist ribu tion for uniform flows
parallel to one axis of t he squar e lat ti ce.
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F igure 4: The sa me as figure 3, but for a diagon al flow on the square
lat t ice.
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Figure 5: Velocity flips used with equal probability to add momentum
for the Poiseuille flow parallel to an axis.

x-dir ection. At t he walls momentum is dissipated via Moebius boundary
condit ions [5]. Their effect is to reverse the tangential comp onents, but not
th e normal components, of the velociti es of all particles crossing or arr iving
at the wall layer. Figure 7 shows the action of the wall layer on velocit ies of
par ticles that cross the wall. The solid arrows are snapshots before and t he
dashed ones after crossing. In additio n to the crossings shown, all crossings
obtained by inflect ion on the normal component of th e wall and on the wall
itself are used. Not shown are par ticl es arr iving at a wall site ; after inflect ion
of their tangent ial comp onent they simply cont inue their voyage from the
same site. Par t icles penetrating through the wall in the described way then
reappear at the opposite lat tice side via periodic boundary condit ions. The
periodicity allows us to simulate the channel flow using only one wall layer.
The channel ends are simp ly wrapped periodically. After averaging over
many iterations we obtain a st ream profile Px(Y) of the momentum density
(see figure 9) .

In different expe riments we varied the mean flow velocity and the lat tice
size. All the results agree well with the parabolic continuum solut ion

v

C1 + C2y + C3 y2

- G/ 2v

distance from the wall

kinematic viscosity

(3.1)
(3.2)

v is obtained from th e curvature of the par abola fit ted through Px (y). The
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Figure 8: The same as figure 7, but for diagonal flow.
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Figur e 9: Typical stream profile for a 64 x 32 la t ti ce and for (t1P ) = 1,
obtained from averaging over 8 x 105 iterations. The solid line is the
best fit by a parabola .
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Figure 10: Viscosities obtained by simulations and predicted using
the nonequilibrium distr ibution.

wall layer at y = 0 was not used for the fit becau se the parabo lic pr ofile
is somewhat distur bed there. Figur e 10 shows the resu lts for v obtained
from equat ion (3.2) for different simulat ion runs wit h lat tice sizes 16V2 x
8V2 through 128 x 64, different forcing st rengt hs (t:.P) , and different flow
directions. For a fixed system size we find no dependence of the viscosity
on the stream velocity or on the forcing st rength , and thus conclude that we
measure the resp onse of an un perturbed system . But we see that v increases
with t he system size, an effect discussed in detail in [5].

In addit ion, we performed an isot ropy test by repeating the experiment
with walls and forces diagonal to the square lat ti ce. The allowed velocity flips
and the effect of the walls for this case are shown in figures 6 and 8. Again
parabolic profiles are obtained , but t he viscosit ies VD for the diagonal flow
are somewhat different from the v p measur ed for the par allel flow. The VD

were indeed obtained from lat tices with domains differing from those for the
Vp . For V D we used the sizes 16V2 x 8V2 and 32V2 x 16V2 , whereas for V p

we used 32 X 16, 64 x 32, and 128 x 64. But as can be seen from figur e 10, the
increase in viscosity with the lat ti ce domain is a small effect compared to its
dir ect ion dependence . T his phenomenon indicat es a breakdown of isot ropy in
the stressed medium and will be discussed in more detail in t he next sect ion .

4. Viscosity and nonequilibrium distributions

In this sect ion we study the effect of perturbing the velocity dist ribution using
a shear flow, and a computation of the viscosity from it . More precisely, we
choose Py = 0 and assum e that Px grows linearly wit h y . For the following,
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let (3 = O. If we assume the gradient Px,y = 8Px/8y is small, the local
equilibrium descrip tion will st ill be approximately valid. For a shear flow
P(i ) = (k . y, 0) with k « 1, we may then write

with

ni(i) = n? + n f(y) + n:(y) (4.1)

o N
n · =-, 21

n f(y) = ; ;i Px(Y)
x

d

C . Vix . Y . Px,y

(4.2)

(4.3)

Here ni(y) is the pertu rbation due to the shear. The first two terms in
equation (4.1) come from equat ion (2.4) developed to first ord er in Px . From
equations (2.4) and (2.7) we have C = (l/vix)(8ni/8a.x)(8a.x/8Px) = 1/ 34
ind ependently of N. T he mechanism responsible for the perturbation ni
may be motivated as follows: Consider a sit e positioned for simp licity at
Yo = O. Then we have n)'(yo) = O. The ni(YO) are t he probabili ties for
incoming velocities Vi at Yo . Due to the increase in n)' with y, we expect a
particle arr iving from above is mor e likely to have a positive vx , whereas a
particle coming from below is more likely to have a negative V x' The sign of
the correction ni indu ced thereby must change with Vix, Viy, and Px,y. The
simplest ansatz is t hus

ni = -a . Vix . Viy . Px,y (4.4)

with a constant a > O. Not ice t hat ni does not contribute to the con­
served quan tities (2.1) through (2.3). Ansatz (4.4) was verified in the above
Poiseuille experiment for a flow par allel to t he lat ti ce. In particular , it was
checked that the coefficient a does not depend on th e absolute value of Vi.
For the Poiseuille flow, the gra dient is of course not constant ; rather , k ex: y ,
so a could be determined from the slope of the st ra ight lines in figur e II.
The open symbols shown there represent the quant it ies (nS

) defined in equa­
t ion (4.5) and are obtained using 4 x 105 iterations. The straight lines are
linear fits predicted by equation (4.4) . To determine the corrections ni , the
states were lumped into three groups with velociti es

T hen for each group

(nS
) = ~ Inx,y+ n _x,_y - (nx, _y + n _x,y )1 (4.5)

was computed. In summing over these four states obtained by reflection , the
background terms nO and n" cancel by symmetry. Our simulat ion resul ts for
a 64 x 32 lattice are shown in figure 11 and agree well with (4.4). Notice that ,
a priori, a could depend on the energies of the states, but does not within
our errors.
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Figure 11: Check of ansatz (4.4) for parallel shear st ress,

In order to obtain an expres sion for t he viscos ity, cons ider a site at Yo = o.
Following [6], we den ot e by Q t he mo me ntum flow downwards thro ug h a
segme nt of unit len gth parall el to the x-axis and located between Yo and
Yo + 1 (see figure 12). Obviously,

(4.6)

o

o

Yo - -El- - - -

o

Figure 12: Momentum tra nsport through a unit segment parallel to
the z-axis. Only velocities point ing into positive x-direct ion are indi­
cated.
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wit h the y-coordinates of the sites where the incoming particles arrive de­
noted by Yi. Inserting here our expansion

ni( X) = d + c . Vix . Y . P;,y - ap . Vix . Viy . Px,y (4.7)

with a coefficient ap for the parallel flow rather than a general a, we get

Q = ( - 18c + 36ap )Px,y (4.8)

By comparison wit h Q = lIPx,y from the defin it ion of the viscosity, we find

lip = - 18c + 36ap (4.9)

For a flow along t he diagonal of the lattice, we make an ansatz analogous to
(4.7), but now wit h a different constant aD :

ni (X) = d + c . Vix . Y . Px,y - ao . Vix . Viy . Px,y (4.10)

T his comp lication der ives from our breaking of rotational invari an ce. Sim­
ulati ons show indeed t hat for lat t ices of comparable size we get different
constants a, for example,

0.051 ± 0.001

0.062 ± 0.001

for axis-parallel flow on a 64 x 32 lat t ice

for diagonal flow on a 32V2 x 16V2 lat ti ce

In both cases , a was obtained by means of equation (4.5) . For the viscosity
of a diagonal flow, an argument an alogous to the above gives

35 70
i/o = - - c + -aD

2 2
(4.11)

T he coefficients a were determined for all system sizes cons idered so far , us­
ing 2 x 105 thro ugh 4 x 105 it erati ons per sample. T he viscosities derived
from equat ions (4.9) and (4.11) are also shown in figure 10. T hey agree very
well wit h those meas ured directly. Notice that the system-size dependence
of the viscosity is ind eed correct ly captur ed . From t he expressions (4.9) and
(4.11) for the viscosities we see that t he main sourc e for the discrepancy be­
tween lip and i/o is t he difference between t he coefficients ap and aD. T his
indi cates that it is the shear indu ced difference in t he occupation numbers
that is responsible for the an isotropy. T he isotropy of the equilibrium distri­
bution depends only on the isot ropy of the single-part icle spectrum (which
is very good), whereas the nonequilibrium distribution dep ends also on the
less isotropic collisions. Relaxation to equilibrium is due to collisions, so
they playa role in damping shear induced corrections of the incoming par­
t icle distribut ion. T he coefficient a is closely related to the degree of this
dam pin g [6]. When shear parallel to the lat ti ce axes is present, collisions are
more efficient in dissipating these perturbations than when there is diagonal
shear stress . T his shortens the dist ance over which propagating momentum
is t ransferr ed for the parallel Po iseuille flow, and thus yields a lower value
for the viscosity.



A Multisp eed Model for Lat tice-Gas Hydrodyn amics

5. C onclusions

13

We stud ied some properties of a multi-velocity latti ce gas on a square lattice.
By including a rich velocity spectrum our model comes closer to t radit ional
molecular dynamics than pr evious mo dels. It also allows simulation of ther­
mal effects. A three -dimensional version of our model would use the simple
cubic lattice and aim at improving its insufficient symmetries by using many
velocities of different moduli. This seems a natural extension compared to
the pseudo-three-dimensional analog [9J of the FHP model [3J . T he lat ter
extension achieves built -in isotropy by choice of a suitable but som ewhat ar­
tificial geomet ry. However , the degree of isot ropy that can be achieved by
averaging over many velocit ies has to be studied carefully.

We stated the problem in two dimensions and were mostly interested in
the effect of the many velocities in partly restoring broken Galilei invarian ce
and rotational symmetry of the qu adratic lat ti ce. For equal excitatio n of
all energy states we obtain ed good equilib rium isot ropy. In spite of this, we
observed that isot ropy is broken to a mu ch larger degree when shear st ress is
present . The phenomenon that nonequili brium states might be more sens it ive
to the br eaking of a basic sym metry than equilibrium states was also found
by [7J. It seems to be a general danger of lattice gas models that should
be given more attent ion [8, 10]. Noti ce that there seems to be a simple
possibili ty to improve nonequilib rium isot ropy in our model: For N = 2 and
E / N = 4, where high energy states are pr eferred , we measure viscosit ies
lip = 1.57 ± 0.06 for a 32 x 16 lattice and vo = 1.62 ± 0.06 for a 16V2 x 8V2
lat ti ce. The unexp ect edly large ani sotropy effects indicate that care must be
taken when using this or simpler models on the square lattice for modeling
thermal effects.
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