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A Multispeed Model for Lattice-Gas Hydrodynamics
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Abstract. A discrete model for two-dimensional hydrodynamics is
presented. Compared to previous cellular-automata constructions, it
has a richer spectrum of states and is thus closer to molecular dynam-
ics. First, the model is tested regarding equilibrium isotropy. Next,
thermal effects in equilibrium are discussed. Then the lattice gas
is used to model the two-dimensional incompressible Navier-Stokes
equation by performing a Poiseuille flow experiment. The expected
effect of the system size on viscosity is found. For the shear flow
we observe a breakdown of isotropy—much stronger than that of the
equilibrium distribution—appearing as a direction-dependent viscos-
ity. The viscosity is computed from the nonequilibrium distributions,
and agreement with the simulation results is found.

1. Description of the model

Our lattice gas is discrete in space, time, and state, and lives on a quadratic
lattice. It is known that with this geometry there arise some problems con-
cerning spurious invariants and isotropy [1, 2], if velocities are restricted to
¥ = (£1,0) and ¥ = (0,%1). The spurious invariants can be eliminated by
adding more velocities, including rest particles with ¢ = 0. It is the purpose
of the present paper to study the extent to which the anisotropy effects can
be suppressed by including the larger velocity spectrum shown in figure 1.
On each site there are 21 allowed single-particle states that may be either
empty or occupied by at most one particle with unit mass, so 22! micro-
configurations are possible on a single site. This exclusion principle allows
cheap storage and easy handling of data. The time development proceeds as
usual with a translation step followed by a collision step, each step applied
synchronously to all particles. Collisions take place between particles on the
same site. Particles crossing or overtaking during a translation step do not
undergo a collision.

The collision rules are designed to conserve particle number, momen-
tum, and energy. The quadruple (N, E, P,, P,) defines for each site a local
“macrostate.” The collision step proceeds as follows: For each site, the
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Figure 1: Spectrum of velocities. Only velocities in the first quadrant
are indicated by arrows.

macrostate of the incoming particle configuration is computed. Then an out-
put configuration is chosen randomly among all microconfigurations com-
patible with this macrostate. These configurations are either stored directly
as bit patterns in a look-up table or constructed from one of the stored bit
patterns by using lattice symmetries or particle-hole symmetry.

To retain microreversibility, it is necessary to have all microconfigura-
tions that are compatible with an (N, E, P,, P,) accessible to the outgoing
particles, if this macrostate is allowed to undergo a collision. Because of the
combinatorial explosion of microstates with increasing N, we thus restrict
collisions to situations with N < 5 particles. Accordingly we work with par-
ticle densities (V) ~ 2. Then collisions may take place in almost all cases
and efficient updating, short mean free paths, and quick relaxation into lo-
cal equilibrium should be guaranteed. Another way to avoid combinatorial
explosion would be to collide the particles on a site pair-wise and to work
off all pairs, but this would make the collision process computationally more
difficult.

2. The equilibrium distribution

We start with the maximum entropy principle for the occupation numbers
n; on a single site, where 7 = 1,...,21. Here i denotes one of the allowed
tuples (v;z,vs). Under constraints of fixed average values for

21
number of particles per site N = » n; (2.1)
i=1

—

21
momentum per site P = Y ¥in; (2.2)
i=1
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Figure 2: Test of the Fermi distribution for different system pa-
rameters. The solid lines are the theoretical predictions from equa-
tion (2.4).

21
energy per site E = Zs,—ni (2.3)
i=1

with single-particle energies &; = v7, +v3, € {0,1,2,4,5}, we obtain a Fermi
function for the occupation numbers:

1
e zexp (fe; — av;)
where z = exp (—fu) and where the Lagrangian multipliers u, &, and 3 are
functions of the conserved quantities. Notice that here and in the following,
E, N, and P are average quantities per lattice site.

The occupation numbers for different values of E' and N and for vanishing
mean momentum P were measured and are plotted in figure 2. For each
choice of N and E we thermalized a 32 X 16 system at rest and then averaged
over 10% iterations.

Notice that negative temperatures are allowed since there is an upper
bound for the particle energies. For very low and very high energies per
particle, the Fermi gas is degenerated. But in order to obtain good isotropy
properties, the whole spectrum of directions should be excited. In the fol-
lowing we will assume nearly equal excitation of all states, characterized
by T = 1/8 ~ co and F =~ Ey = (N/21)Y;&;. By symmetry, @ must
vanish for P = 0. To describe low-speed equilibria we restrict ourselves
to small values of a. With this parameter adjustment, then by insert-
ing equation (2.4) into the conservation equations and by neglecting terms

(2.4)
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O((E — Ey)?, P*(E — Ey), P*), we get

1 2
e = 1+ {21 + 717(12\;) f} (2.5)
_ (21)? { g 2}
b= 4N(21 - N) F=5P 54
B (21)2 _ T1(21)%g [ 9
W) T 34N(21 - N) . ) f=5f ]
21)3 2 2
with
f:(E—EO) _ 21-2N
=335 9= 34N@21-N)
_ 107 N(21 - N) 105 N(21 - N)

In contrast to the results for the hexagonal lattice [3, 4], there is a differ-
ence between the coefficients r and s that appear in equation (2.7), reflecting
the anisotropy of the square lattice. But this difference is very small. For
equal excitation we thus could hope that anisotropy is indeed negligible at
low speeds, since moreover its effect ceases for vanishing P. To check the an-
alytic results we performed some simulations with different uniform stream
velocities in directions parallel and diagonal to the square lattice. The data
shown in figures 3 and 4 are for parallel and diagonal flows with N = 2 and
E = 6.476 ~ E,. For each P we used 10* iterations on a 128 x 64 lattice.
In addition to the mean populations of different single-particle states, the
figures show solid curves predicted by equations (2.4) through (2.7).

The experimental data points lie well on the curves predicted by theory.
In the following simulations the magnitude of P will be so small (< 0.06)
that the above equilibrium anisotropy should not show up.

3. A Poiseuille flow experiment

To test the hydrodynamic behavior of the model, we simulated a channel
flow designed similarly to that described in [5]. A stationary flow is driven
by an average rate (A P) of momentum added uniformly to a channel between
two walls. This is done by flipping velocities at randomly chosen sites and
times. Figure 5 shows all flips used to add momentum for the axis-parallel
flow. AP denotes the units of momentum added to the system when a flip
takes place. In addition to the flips shown, all flips obtained by inflections
on the z-axis are used. If at the chosen space-time point one or several
flips can be applied, one of them is chosen randomly; otherwise we go to
the next neighbor downstream. Thus, at each site a uniform force G =
(AP)/(system size) is simulated. The walls and the force are parallel to the
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Figure 3: Transformation of the Fermi distribution for uniform flows
parallel to one axis of the square lattice.
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Figure 4: The same as figure 3, but for a diagonal flow on the square
lattice.
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Figure 5: Velocity flips used with equal probability to add momentum
for the Poiseuille flow parallel to an axis.

z-direction. At the walls momentum is dissipated via Moebius boundary
conditions [5]. Their effect is to reverse the tangential components, but not
the normal components, of the velocities of all particles crossing or arriving
at the wall layer. Figure 7 shows the action of the wall layer on velocities of
particles that cross the wall. The solid arrows are snapshots before and the
dashed ones after crossing. In addition to the crossings shown, all crossings
obtained by inflection on the normal component of the wall and on the wall
itself are used. Not shown are particles arriving at a wall site; after inflection
of their tangential component they simply continue their voyage from the
same site. Particles penetrating through the wall in the described way then
reappear at the opposite lattice side via periodic boundary conditions. The
periodicity allows us to simulate the channel flow using only one wall layer.
The channel ends are simply wrapped periodically. After averaging over
many iterations we obtain a stream profile P,(y) of the momentum density
(see figure 9).

In different experiments we varied the mean flow velocity and the lattice
size. All the results agree well with the parabolic continuum solution

P.(y) = Ci+Cuy+Csy? (3.1)
Cy = —G/2v (3.2)
y : distance from the wall
v : kinematic viscosity

v is obtained from the curvature of the parabola fitted through P,(y). The
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Figure 6: The same as figure 5, but for diagonal flow.
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Figure 7: Friction at the wall for parallel flow.
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Figure 8: The same as figure 7, but for diagonal flow.
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Figure 9: Typical stream profile for a 64 x 32 lattice and for (AP) =1,

obtained from averaging over 8 x 10° iterations. The solid line is the
best fit by a parabola.
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Figure 10: Viscosities obtained by simulations and predicted using
the nonequilibrium distribution.

wall layer at y = 0 was not used for the fit because the parabolic profile
is somewhat disturbed there. Figure 10 shows the results for v obtained
from equation (3.2) for different simulation runs with lattice sizes 16v/2 x
8v/2 through 128 x 64, different forcing strengths (AP), and different flow
directions. For a fixed system size we find no dependence of the viscosity
on the stream velocity or on the forcing strength, and thus conclude that we
measure the response of an unperturbed system. But we see that v increases
with the system size, an effect discussed in detail in [5].

In addition, we performed an isotropy test by repeating the experiment
with walls and forces diagonal to the square lattice. The allowed velocity flips
and the effect of the walls for this case are shown in figures 6 and 8. Again
parabolic profiles are obtained, but the viscosities vp for the diagonal flow
are somewhat different from the vp measured for the parallel flow. The vp
were indeed obtained from lattices with domains differing from those for the
vp. For vp we used the sizes 16v/2 x 8v/2 and 32v/2 x 16\/5, whereas for vp
we used 32 X 16, 64 x 32, and 128 x 64. But as can be seen from figure 10, the
increase in viscosity with the lattice domain is a small effect compared to its
direction dependence. This phenomenon indicates a breakdown of isotropy in
the stressed medium and will be discussed in more detail in the next section.

4. Viscosity and nonequilibrium distributions

In this section we study the effect of perturbing the velocity distribution using
a shear flow, and a computation of the viscosity from it. More precisely, we
choose P, = 0 and assume that P, grows linearly with y. For the following,
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let 3 = 0. If we assume the gradient P,, = 9P,/0y is small, the local
equilibrium description will still be approximately valid. For a shear flow
P(Z) = (k- y,0) with k < 1, we may then write

ni(Z) = nj +n(y) +ni(y) (4.1)
with
N
0_ " =
=5 = d (4.2)
w 8’fL.,; _
ni(y) = ap, Piy) = c vy Poy (4.3)

Here ni(y) is the perturbation due to the shear. The first two terms in
equation (4.1) come from equation (2.4) developed to first order in P,. From
equations (2.4) and (2.7) we have ¢ = (1/vi;)(0n;/d0y)(8a,/OP;) = 1/34
independently of N. The mechanism responsible for the perturbation nf
may be motivated as follows: Consider a site positioned for simplicity at
yo = 0. Then we have n¥(yo) = 0. The n;(yo) are the probabilities for
incoming velocities v; at yo. Due to the increase in n} with y, we expect a
particle arriving from above is more likely to have a positive v,, whereas a
particle coming from below is more likely to have a negative v,. The sign of
the correction n; induced thereby must change with vy, vy, and P, ,. The
simplest ansatz is thus

N} = —a - Vig - Viy - Pry (4.4)

with a constant a > 0. Notice that n{ does not contribute to the con-
served quantities (2.1) through (2.3). Ansatz (4.4) was verified in the above
Poiseuille experiment for a flow parallel to the lattice. In particular, it was
checked that the coefficient a does not depend on the absolute value of v;.
For the Poiseuille flow, the gradient is of course not constant; rather, k o vy,
so a could be determined from the slope of the straight lines in figure 11.
The open symbols shown there represent the quantities (n®) defined in equa-
tion (4.5) and are obtained using 4 x 10° iterations. The straight lines are
linear fits predicted by equation (4.4). To determine the corrections nf, the
states were lumped into three groups with velocities

{(vzv y), (=2, vy), (—v _vy)7 (vg, _Uy)} Vg, Uy 7 0

Then for each group

5 1
(1) = 7| Moy + gy = (Raymy + oy )| (43)

was computed. In summing over these four states obtained by reflection, the
background terms n° and n* cancel by symmetry. Our simulation results for
a 64 x 32 lattice are shown in figure 11 and agree well with (4.4). Notice that,
a priori, a could depend on the energies of the states, but does not within
our errors.
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Figure 11: Check of ansatz (4.4) for parallel shear stress.

In order to obtain an expression for the viscosity, consider a site at yo = 0.
Following [6], we denote by @ the momentum flow downwards through a
segment of unit length parallel to the z-axis and located between y, and
yo + 1 (see figure 12). Obviously,

Q={ Z = Z }ni(yi)'viz (4.6)

10y <0 4wy >0

Figure 12: Momentum transport through a unit segment parallel to
the z-axis. Only velocities pointing into positive z-direction are indi-
cated.
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with the y-coordinates of the sites where the incoming particles arrive de-
noted by y;. Inserting here our expansion

ni(Z) =d4c vig Y Pry — ap - Vig - Viy - Py (4.7
with a coefficient ap for the parallel flow rather than a general a, we get

Q = (—18c+ 36ap)P,, (4.8)
By comparison with @ = v P, , from the definition of the viscosity, we find

vp = —18¢ + 36ap (4.9)

For a flow along the diagonal of the lattice, we make an ansatz analogous to
(4.7), but now with a different constant ap:
ni(Z) =d+c¢-vig Y- Poy — ap - Vig * Uiy Pry (4.10)

This complication derives from our breaking of rotational invariance. Sim-
ulations show indeed that for lattices of comparable size we get different
constants a, for example,

ap 0.051 £ 0.001 for axis-parallel flow on a 64 x 32 lattice
ap = 0.062£0.001 for diagonal flow on a 324/2 x 16+/2 lattice

In both cases, a was obtained by means of equation (4.5). For the viscosity
of a diagonal flow, an argument analogous to the above gives

vp = 5 c+ 2 ap (4.11)
The coefficients a were determined for all system sizes considered so far, us-
ing 2 x 10° through 4 x 10° iterations per sample. The viscosities derived
from equations (4.9) and (4.11) are also shown in figure 10. They agree very
well with those measured directly. Notice that the system-size dependence
of the viscosity is indeed correctly captured. From the expressions (4.9) and
(4.11) for the viscosities we see that the main source for the discrepancy be-
tween vp and vp is the difference between the coefficients ap and ap. This
indicates that it is the shear induced difference in the occupation numbers
that is responsible for the anisotropy. The isotropy of the equilibrium distri-
bution depends only on the isotropy of the single-particle spectrum (which
is very good), whereas the nonequilibrium distribution depends also on the
less isotropic collisions. Relaxation to equilibrium is due to collisions, so
they play a role in damping shear induced corrections of the incoming par-
ticle distribution. The coefficient a is closely related to the degree of this
damping [6]. When shear parallel to the lattice axes is present, collisions are
more efficient in dissipating these perturbations than when there is diagonal
shear stress. This shortens the distance over which propagating momentum
is transferred for the parallel Poiseuille flow, and thus yields a lower value
for the viscosity.
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5. Conclusions

We studied some properties of a multi-velocity lattice gas on a square lattice.
By including a rich velocity spectrum our model comes closer to traditional
molecular dynamics than previous models. It also allows simulation of ther-
mal effects. A three-dimensional version of our model would use the simple
cubic lattice and aim at improving its insufficient symmetries by using many
velocities of different moduli. This seems a natural extension compared to
the pseudo-three-dimensional analog [9] of the FHP model [3]. The latter
extension achieves built-in isotropy by choice of a suitable but somewhat ar-
tificial geometry. However, the degree of isotropy that can be achieved by
averaging over many velocities has to be studied carefully.

We stated the problem in two dimensions and were mostly interested in
the effect of the many velocities in partly restoring broken Galilei invariance
and rotational symmetry of the quadratic lattice. For equal excitation of
all energy states we obtained good equilibrium isotropy. In spite of this, we
observed that isotropy is broken to a much larger degree when shear stress is
present. The phenomenon that nonequilibrium states might be more sensitive
to the breaking of a basic symmetry than equilibrium states was also found
by [7]. It seems to be a general danger of lattice gas models that should
be given more attention [8, 10]. Notice that there seems to be a simple
possibility to improve nonequilibrium isotropy in our model: For N = 2 and
E/N = 4, where high energy states are preferred, we measure viscosities
vp = 1.57£0.06 for a 32 x 16 lattice and vp = 1.62£0.06 for a 16v/2 x 8v/2
lattice. The unexpectedly large anisotropy effects indicate that care must be
taken when using this or simpler models on the square lattice for modeling
thermal effects.
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