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Abstract. We stu dy t he dyn ami cs of an automaton with memory
whose equation is t he following:

'-1
Xntl = lCL: a j Xn _ l - 0]

i=O

where a = (ai)i=o...k_ l deno tes the coupling coefficients vector. We
show that if a is symmetric, then wecan introduce an energy operator;
thereby we slate that the periods of the automaton always divide
(k + 1) and give a bound of the tra nsient . We also st udy the case
of reversible syste ms and characterize reversibili ty versus the coupling
coeffici ents . T hereafter, we give some result s about t he pivot sums
systems. Some conject ures concern ing the general case are given.

1. Introduction

In th is paper, we study the dynamical behavior of an automaton with a
bou nded memory. T he equat ion of the automaton is the following:

'-I
X n+ l = I [L a;x n_ ; - 0J (1.1)

i= O

where
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X n is the state of the automaton at the discrete time step n ; it is a
Boolean variable;

aj are the coupling coefficients; they arc real constants;

e is the threshold; it is a real parameter;

k is the size of the memory; it is an integer constant;

I(u] = 0 ifu < 0 and l [uJ = 1 ifu 2: o.
Th is automaton has been essentially introduced in order to modelize ele­

mentary electrical properties of the nervous system [1-3,13]. Equat ion (1.1)
is called a single neuronic equation and modelizes the behavior of a single
neuron. In this case, the resting state is represented by "0" I and the firing
state by "1».

T he genera l dynamic of such a model is extremely rich. Indeed , it is shown
in [13} that if we conned various automata of this kind-called formalized
neurons-we can simulate every finite automaton.

Th is model has been st udied by many authors [1-5,12,14,15J for some
particular choices of the coupling coefficients OJ and the threshold e. In this
paper} we present some results concerning these particular choices and we
give some conjectures concerning the general case. More precisely} we study
the case of palindromic systems and characterize the reversible automata
according to the values of OJ and 0 . We also st udy the case of the pivot-sum
sys t.ems.

Clear ly, equation (1.1) is completely defined by the pair (a, El) where
a = (ao)all "' } Ok_ I) ' It can be transformed into a system of order k in the
classical following ways

T : {O, l}k -> {O, I}k

y(n} = (y,( n), y, (n ), . . . ,yk(n )) ..... yen+1) = T (y(n))

=(y,( n), Y3(n ), ... ,Yk(n), f(y(n)))

where

' -I
f (y(n )) = 1(L; a;Yk- ;(n ) - El)

i=O

(1.2)

Hence} the automaton is equivalent to a discrete iteration on {O} !}k.
Using this equivalence, ( 1.1) can also be seen as an automata network. In­
deed, let T), ... ,T, be the components of T : y;(n + 1) = T;(y(n)). Clearly,
Yk(n+l ) = Tk(y(n)) = f(y (n)), and for 1 ,,; i "; k- I , y;(n+l) = T;(y(n)) =
y'+ I(n) = I[y;+,(n ) - 1/21 .

T he net work is composed of k thres hold automata (without memory) .
Hencefort h, the st udy of (Ll ) can be included in the genera l framework of
the finite networks of threshold automata:
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Figu re 1: Direct ed graph associated to a single neuronic equation
with memory of length k = 4 and coupling coefficient vecto r a =
(ao ,all a2 ,a3) ' Circles : th e state of the cell i is t he previous state of
its neighbor cell i +1. Squares : th e state of th e cell 4 is computed by
taking into account all the cells of its neighborhood cells 1, 2, 3, and
4; with a threshold rule f .

k

y;(n + 1) = l [E m ;; y;(n ) - e;]
j=l

(1.3)

where M = ( mjj) l<i,j<k is a real matrix and (0 i ) i=1.... .k is a real k-veetor.
Figure 1 shows t heg raph assoc iated to the neuro nic equation.

In [8], Eric Goles studies the case of a real symmet ric matrix M. He
proves that, in thi s case, the period of the cycles of (1.3) is less than o r equal
102.

On the other hand, it is easily seen that the previous system (1.2) can be
written as follows:

k

Yi(n + 1) = l [E m;; y;(n ) - e i ]
j = l

where M = (mij) l<i,j<k is a real matrix defined by

{

I if j - i = 1 an d i < k
m ij = a i _ j If t = k

o otherwise

Note that in the former example, the matri x M is not symmetric. Very few
results are known in th is case.
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Moreover, to each arc (i + 1, i)i=: l, ... ,k we assoc iate a weight equal to 1,
an d to each arc (i ,k)i: t,....k we assoc iate a weight equal to a k_i .

In the following, let A(a ,0) denote the automaton defined by the equat ion
(1.1).

We say that two automata are equivalent if they have the same iteration
graph.

A(a,0) is astrict threshold automaton if for every x = (xo , z r, X2, · .. ,

Xk_ .) E {D , I} k, we have

k- 1

:La;x; - 0;6 D
i=O

Not e tha t for every automaton A(a,0) t here a lways exists a rea l number e
such that A(a , 0 +e) is a st rict t hreshold automaton and A(a, 0 ) '" A(a, 0 +
s) .

Hence, wit hout lost of generality, we can always assume that A(a , 0) is
a str ict threshold automato n.

Lemma 1. Let A(a,0) be a given st rict thres hold automaton. Then there
always exis ts an equivalent s trict thresho.ld a uto maton A(a'", e "' ) such that
the coefficients ai are int egers.

Proof. If the coefficients are rational aj = mildj then let ai = M .aj and
0 · = M x 0 where M = lcm(d;}.

If there exists an irrational coefficient a j then we can always find rational
numbers ai such tha t aj < ai ::; aj +€/ 2k where e = inf{! E a jXj - 81where
X; E {D , I ll . Clearly 0 > D because we have assumed that A(a ,0) is a
st rict threshold au tomaton. We can easily verify that A(a, 0} is equivalent
to A(a*,8): since aj ~ ai, we have

if L:ajXi - e 2: 0 then L:aixi - e 2: 0

If L ajXi - 8 < 0 t hen we have :Lajxj - 0 < - € , which implies th at L aixi-
o < - 0/2 < D and concludes the proof. •

From now on we shall assume that the coefficients a j are integers.

2. Symmetric memory

We assume in th is sect ion that the coupling coefficients of (1.1) form a sym­
metr ic word; that is, a ; = ak- l-i for every i E {O, .. . ,k - 1}.

Following E. Goles IS}, we can int roduce an operator E characterizing the
dynamical behavior of such systems: for each x = (xo, X l, .•. I Xk) E {O, 1}k+l ,
we define the operator E by

k- l k k

E( x) = - :LXk- j :L a,_j_ IXk_, +0 :L Xj
j =O ~=j+l j = O
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More generally for a trajectory (Xi) iEN we have

k- l k k

E (xn_J" Xn- k+ h ' " 1 Xn) = - :L: X n_; L a~_;_ IXn_~ + 8 L X n_;
; =0 ~=;+ l ;=0

165

The operat or E can be seen as a kind of energy of the system. Indeed , E is
a Lyapunov function. (For a more general ap proach, see E. Goles [8].) The
variat ion of E gives an idea of how t he system reaches a stat ionary state.
For this purpose, we define a quant ity 6.n by

Let ( Xi)iEN be a trajectory of the system whose period and transient will be
denoted by p and q respecti vely. Since t he coupling coefficients a i present a
symmetric st ruct ure, we get

.6.n = E(Xn_b ... , X n) - E(X n _k _ I ,' .. , x n-d

k

- (Xn - Xn-k- ,) (L: a.xn_. - 8 )
~ =l

Lemma 2. If X n =f:. Xn_k_1 then 6.n < O.

Proof. Suppose that X n =f:. X n_k_ I ' If X n = 1 (which implies that Xn _k_ 1 = 0)
then

k -1

L a~Xn_~_ l - 8 > 0
~=o

11 Xn = 0 then the proof is the same.•

Theorem 1. T he period p of a cy cle of a given symmet ric memory sys tem
A(a, 8) divides k +1.

Proof. Note that for every i we have 6. i ::; O. Since Xq +i = Xq+p+i for
i = 0,1 ,2, . . . , k we deduce that

p

L 6.q+k+i = E (xq , Xq+ l , · .. I Xq+k) - E (xq+p, xHP+ l, · . . , Xq+ k+p)
i=O

= 0

Hence 6. q+ k+ i = 0 for every i = 0,1 , 2, ... , po Lemma 2 implies that Xk+q+i =
Xq+i_l for every i = 1, 2, ... .P which proves tha t p divides k + 1. •

Th e preceding operator can be used in order to derive a genera l boun d
for the length of the transient .

Theorem 2. T he transient q of a given symmetric memory system A(a ,8)
is bounded by
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'-1
q :S (k +1)'[2101 +L: la.1]

s=o

P roof. It is easil y seen that for every y = (Y01YI1"' lYk) E {O ,l}k+l we
have

'-1 •- L: L: a._;_1 :s E(y) :s 0(k + 1)
;=0 s=j+1

a s > 0

' -1 ,
- L: L: a s_ j _ l if 0 ~ 0

j=O s =j +1
as < 0

and

'-1 •- L: L: a._;_1+ 0 (k + 1) :s E(y) :s
;=0 s=j+1

as > 0

' - I ,
-L: L: a,,_j_ l if 0 :s 0

j = O s = j + 1
a ll < 0

By applying th is formula respect ively to the vectors ( x q \ X q+l, .. . lxq+d and
(xo, XI, · " 1 Xk) we obtain

k-l k

+L: L: la.-;-t1
i=O3=;+1

S· ,,'-1", I . 1- ~ ,,'-I I ·1 itlfice L.. j=O L.. s=j+I a" - J-l - 2 L...i=O U1 we can wn e

Applyi ng lemm a I, we deduce that

q

E(xq \ X q+ 1J ' " 1 Xq+k) - E(x ol X l , · · ·, X k) = L: 6.k+i < 0
i= l
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Let us call d = min{(-I'., +tl such that 1'.' +1 < 0 and i = 1,2, . .. ,q} . On
the other hand, we have

'- I
d = . min !I(Xi_1 - x'+i}I ·1L:a. X' +i+. _ 1 - 011

'l = 1, 2, ... , Q ,,=0
Xi- l =f:. Xk+i

= min
i= 1,2, . . . , q

I'.'+i " 0

' -1
IL asXk+i+,,_l - OJ since IXk+i - xii = 1.
,,=0

As the coefficients a j are integers, we can easily verify that d ~ 1/2 . Let
q =a + fJ with

a = card {i S q such that I'.'+ i = O}

fJ = card {i S q such that I'.H i " O}

Clearly, we have cr:5 k{J since (A k+i) O< i<q cannot contain (k + 1) successive
zeros. So we get - -

1 k- l

d x fJ S (k + 1)[101 + 2L: la.1I
,,=0

with d 2 1/ 2.
As q = a + fJ we can write q S (k + l) fJ , which implies that

'- I
q S (k + 1)' [2101 + L:la.1I

,,=0

• The preceding analysis can be extended to the following case:

'- I
Xn+l = 1[L: a iXn_i - 01

i= r

(2.1)

where the coeffi cients ai are such that aj = ak+r-i- l {or i E {T,T+ l , . . . I k- 1} .

Lemma 3. The a.utomaton defined by (2.1) is equivalent to the following

wi th

k+r-l
Xn +I = l [ L a~Xn_i - 0l

i=O

a~ = {ai if i = r, r+ 1
"

" , k - 1
I 0 oth erwise.

(2.2)

Corolla ry 1. Tf (Xi)iEN is a trajec tory of the system (2.1) with a transient
length q and a period ]>, then we have
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c~
5

Figure 2: Iteration graph associated with example 2.

the period p always divides (k +,. + 1),

the transient q is bounded by

k- 1

q :S (k +,. + 1)' [2101+ 2: ladl
i=r

P roof. Follows directly from theorems 1 and 2. •

Example 1. Let k = 3, 0 = -2.5 ·and a = (-2, -1 , - 2)

X n+l = 1[2,5 - (2xn + Xn- l +2xn _,)1
lVe can see 011 figure 2 tha t A (a , t ) possesses two cy cles and that tile period
of each cycle di vides (k + 1).

Corollary 2. Let A(a, 0) be a given symmetric memory system whose co­
efficients are such that

ai E {- l,O ,I } thenq:S 3k(k + l )

(po lynomial bo und versus exponential possible sta tes) .

Proof. Obvious. •
VVe now consider a particular case of the sym metric memory. \IVe shall

assu me that the coupling coefficients are of the form a2i = 1 and a 2i+l = O.

P rop osit ion 1. f[ 0 ;:0: rk/21 or 0 :s °then A(a,0) has only fixed
po ints 0 or 1 and no cycle of order greater than 1.

f[°< 0 < rk/21 then A(a,0) has a unique globally at tractive cycle
of orcer 2 : (0, 1).
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P roof. The first part of the proposit ion is obvious since the sign of 8 +
L:a jXn _i is always the same.

In order to prove the second part, remar k that since a 2i+l = 0, we can
assume that k is odd. Let (XO ,Xh .'. , X k - tl be an initi al configurat ion and
let C be its associated cycle of period p. To prove that C is reduced to (0, I) ,
we shall show that C has neither two consecut ive 1 nor two consecutive O.

Since k is odd , we have

Xn+l = I [( x n +Xn_, +Xn_, +...+ x n_' +I ) - 0 ] (2.3)

Let us assume that C has two consecut ive 1: there exists n such that Xn _ k _ l =
Xn-k = 1 with n - k - 1 ~ q, where q denotes the length of the transient.

Note that the vector a = (ao l a i, a2, . . . J ak-d is symmetric, which implies
that p divides (k +1). Thus, X n = X n-k- l = 1 and Xn+ l = Xn-k = 1. On the
ot her hand, we have

Xn+' = I [( x n+l +Xn_1 + + x n- .+2) - 01
1[(xn_1 +Xn_ 3 + + Xn-k+' + x n+tl - 0]

= I[(xn_, + Xn_3 + + Xn_k+' + x n_.) - 0]

which proves that X n = Xn+l = X n+ 2 = 1. With the same reasoning, we
get X n+T = 1. Hence C = (1,1, . .. , I) which gives a contrad ict ion to the
hypot besis 0 < rk/ 21 .

If we assume that C has two consecutive 0, we can easily show in a similar
way that X n+T = 0 for any integer r ~ 1, which leads to the same conclusion .

•
Corollary 3. If0 < 0 then q :5 3(k + 1)' rk/ 21.

If 0 :5 0 then q :5 (k + 1)'(1+ rk/2lJ.

P roof. A direct consequence of theorem 2.•

3. P osi t ive cou pli ng coefficients

Note that if the coupling coefficients aj are posit ive} then the operator T
defined as follows is a monotone map:

where

'-1
J(Xn _ k +l ,Xn _ k+ 21 · ·· ' X n ) = l [L a ixn-i - 0 }

i=O
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Hence it is well known that ifT generates a p-cycle x, T( x) T' (x ), . . ., TP- 1 (x)
(with p > 1) then x, T (x ), T' (x) , ... ,TP-I(X) are uncomparable relatively
to the par tial ordering. If there exist two integers nand m such t hat X n =

(X,,- k+ l , X n - k + 2 , ... 1 Xn) and X m = (X m - k+ l 1 X m _ k+ 2) ' " , x m ) are compara ble,
then we have a cycle whose length divides 1m - n ]. In par ticular, if there
exists an integer n such that x; and Xn+l are comparable, then the sequence
(Xi)iEN converges toward a fixed point .

Now let us see the par ticular case when the coupling coefficients are de­
creasmg; i.e. ,

P rop osit ion 2. If the coupling coefficients arc decreasing positive then the
a.utomaton A(a,0) has only fixed points.

Proof. We shall prove that if X n = 0 then X n+l = O.
Let us assume that. X n = 0, which is equivalent to aOxn _ 1 + a tXn _2 +

a2X n _ J + ...+ ak_lxn_k - e < O. Then we have aoxn + a lXn _ ) + ... +
ak_lXn_k+! - 0 < aOXn _ l + alxn_2 + ...a k_2Xn _k+l + ak-lXn-k - 0 < 0,
which implies t hat X n +! = O.

Note tha t if the coupling coefficient s are increasing positive, then we have
not the same result as before. •

Example 2.

X n+! = l [xn + 2Xn_ l + 4X n_2 + 6X n_ 3 - 5.5) (3.1)

As it is shown in figure 3, equat ion (3.1) admi ts two cycles of period 4 and
2 and two fixed points.

Remark that the period of each cycle divides k. Thi s is a direct consequence
of theore m 4 since we have ak_ t - e ::; o.

4. Reversib le systems

In general, the automaton A(a
j
0 ) is not reversible in the sense that from two

different initial configurati ons ( X n-k+l ' Xn-k+2 ' . .. , x n) and (Yn -k+!, Yn- k+2,

. .. , Y-n ) we can get the same final state.
Let us associate to the au tomaton A(a,0 ) the operator T defi ned on

{O, l}' by

where

k- I

f(xo , x" ... , xk_d = 1[l:: a'Xk_I_' - 6j
k =O
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Figu re 3: Iteration graph associated with exa mple 2.

Definition 1. A(a , 8) is a reversible autom aton JET is a bijection.

Definit ion 2. A( a, 0) is a shift if / ( XO, Xl ," " Xk_ l) = Xoj that is,

T ( XO, X I , . . . ,Xk_d = (XI,X2, . . . ,Xk_bXO).

A(a, 8 ) is an antishift if I( xo, x" .. . , Xk-tl = 1 - Xo·

17l

Clearly, if A(a , 8 ) is a shift, then for every x in {a, I l k we have T k(x) = x,
and if A(a ,l) is an antis hift, then we have T 2k (X ) = x. We deduce from this
remar k that if A(a,0) is a shift or an antishift then A( a, t) is reversible.
Moreover, we have T- 1 = T k- 1 if A(a, 0) is a shift and T-I = T 2k- l if
A(a, 8 ) is an antishift.

P rop os it ion 3. A(a ,8) is reversible if and only if A(a,0) is a shift 0 1' an
alltishift.

Proof. We shall prove that if A(a,8) is revers ible, then A(a,8) is a shift
or an ant ishiIt . We dist inguish three cases : ak_ l > 0, ak_ 1 < 0, ak-l = O.

If ak _l > 0, then we have

k-2 k- 2

L aiXk_t_i - 0 < ak_ 1 +L ajXk_ l_j - 8
;=0 ;=0

which implies that /(0, X I, X2,' .. , xk_d = 0 and /(1, X t, X 2, ' .. , x k _ d 1.
Hence A(a , 8 ) is a shift .

If ak _1 < 0, we have
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k-2 k-2

ak-l + L: aixk-l-i - 0 < 2::= ajXk_l_i - e
i=O i=O

which implies that f(O, Xl, X2, ... , xk_d = 1 and f(l, Xl, x2 ,'" ,xk-d = O.
Since T is reversible, J(D, Xl, X2, · .. 1 Xk-d =f. f( l, X l, $2,· . . 1 $ /;-1)' Hence
A(a, 0 ) is an antishift.

If ak_l = 0, then T cannot be a biject ion. Indeed for two different ele­
ments, we have

thus T is not a bijection.

Proposition 4. A(a,0) is a shift if and only if

L a;-0J < 0
iSk-2 and <1;<0

and

[a'_1 + L a; - 0J ::: 0 (c
i 5. k- 2 and <1;>0

A(a,0) is an antishift if and only if

L a;-0kO
i$.k-Z and a;<O

and

[a'_1 + L a; - 01 < 0 (;3)
i 9 - 2 and ai>O

P roof. Assume that A(a ,0 ) is a shift. For x = (Xl> X" , x,-d in {O, I}'-I
define (0, x) = (0, Xl, X 2 1 . . " XI;_I) and (I, x) = (1, X l , X 2, , xk- d. We have
1(0, x) = 0 and 1( 1, x) = I.

Define

P = {i E {0, 1, 2, ,k-2}such thata;>0},

.N = {i E {0, 1, 2, ,k-2}suchthat a;<0}.

Let Y = (Yl> Y" ... ,Y,-d E {O, 1}'-1 be such that

{

0 if k - i-I E .N
Y; = I if k - i-I E P

otherwise

where Yi = * means that Yi can take any value in {D, I},

I (O,Yl> Y" "',Y,- I) = I [ L a; - 0J = 0
i5.k-2 and e.co
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implies that

L: a;- 0 <0
j ~k-2 and 0.; > 0

Let now z = (Z l ' Z2 , " " Zk_ l) be such that Zj = 1 - Yj.

f {1, Z" Z2, ... , Zk_.) = l (ak_1+ L: ao- 0] = 1
i~k- 2 and 0.;>0

implies that

ak_ 1+ L: a; - 0 ?: 0
i9-2 and (1;>0

173

Conversely, let us assume that the formula [o) is verified.
Since L:~~~ a jXk_I_i - e ::; Lj~k_2 and 0..>0 Gj - 0 < 0, we deduce that

f(0, X I , X 2, · .. , X k _ l ) = 0 and hence A(a, 0) is a shift .
In a similar way we can show that f(l, x) = 1. •

Theorem 3. 1. A reversible a utomaton A(a, 0) has only cycles of length
L such that

L divides k jf A(a, 0 ) .is a shift (i.e. ak_1 > 0),

L divides 2k if A(a , 0) is an an(ishift (i.e. ak_1 < 0),

2. T he automaton defined by equat ion (1.1) cannot have a cycle ofJeng th
2k

.

Proof. (1) is an immediate consequence of the previous remarks. (2) If
A(a , 0 ) has a cycle of length L = 2k , then the associated operator T has also
a cycle of length L = 2\ and thus is bijective, which leads to a contradiction
when k is greater than 1. •

Many properties of shift and antishift operators are given in 112]. More­
over, note that if we have an automaton with a geometric memory (i.e. case
where a; = -(b;) wit h b > 0) then for every 0 < b :5 1 the operato r T is
never bijective. But if we have b 2: 2 then there always exists e lk,,,) = 2~:: : )
such that the operator T is bijective.

From proposition 3 we deduce that there exist only two different reversible
memory systems: the shift and the antishift. Hence if a k_ 1 is positive the
reversible system is equivalent to A(a ,0) with a = (0, 0, 0, ... ,0 ,1 ) and
e = 1/2 (shift). Otherwise, if ak_ 1 is negative, the reversible system is
equivalent to A(a, 0 ) with a = (0, 0, ... , 0, - 1) and 0 = - 1/2 (antishift) .
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5 . P ivot sums

We first study the case of a sing le pivot and then we shall treat the general
case.

Definition 3. i is l-pivot if for every n, Xn+ l = 1 implies Xn-i = 1.

i is O-pivot if [or every n, Xn+l = 0 implies Xn_i = O.

i is an ant ipivot jf for every n, Xn_i = 0 is eq uivalent to In+! = 1.

Lemma 4. i is i-pivo t if and only if

k-l

L: Gj - 0 < 0
j=O

j i i and aj > 0

i is O-pivot if and only if

k- l

ai + L: aj - 0 ;:: 0
j=O

j i i and aj < 0

i is an antipivot if and only if

k- l

ai+ L:
j=O

j i i and Gj > 0

a· < 0 <J -

k-l

L: Uj

j = 0
j i i and aj < 0

P ro of. Follows from direct computat ions. •

T heorem 4. Let p be the period of a cycle of the automa ton A(a, 0 ).

ff i is a a-pi vot or a [-pivot then p divides (i + I ).

If i is an antipivot then p divides 2(i + I).

P roof. Assume that i is a l-pivot. In orde r to prove that p divides (i + I ),
we introduce the following operator

It is clear that E, is a negative funct ion; i.e . for every n, Ej(n) ::; O. Call q
the length of the transient of the trajectory and assu me that there ex ists an
integer n > q + i such that Ej(n) < O. We have then Xn+ l < Xn_j . Since E,
is a negative funct ion) we have

Xn_i+p(i+ l) :s; Xn-it(p- l)(it1) :s; .. . S Xntl < Xn_ i'
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Since p is the period of the trajectory, we have X n_i+p(i+ l) = Xn_i. Thus we
get a cont radict ion. We dedu ce t hat Bi(n ) = aVn 2: i +q which implies that
the period divides (i + 1).

The proo f for the l -p ivot and the antipivot is similar. •
We shall now treat two cases of pivot sum:

Definit ion 4. Let T be a subset of {a, 1, . . . , k -I} .

1. T represents 1-pivot sum if

Xn+ 1 = 1 => Vi E T Xn_ i = 1.

2. T represents O-pivot sum if

X n+l = 0 => ViE T Xn-i = O.

Le mma 5 . 1. T represents O-pi vot sum if an d only if

sup]
iET

'-I

E
j=a

j ¥ i and Uj > a

Uj - 0] < a

2. T represent s l ~pivo t sum if and only if

inf[ui +
iET

' -I

E
j=a

j I i and Uj < a

U · - 0J > a) -

Proof. Follows from a direct computation.•

Corollary 4. If we have O-pivot sum or l -pivot sum, th en th e period p
always div ides gcdiET(i + 1) (gcd = great common divi sor) .

Pro of. Follows direct ly from the fact that each i E T consti tutes a pivot of
the system. •

Corollary 5. Let T represent t-pi vot sum (with t = a or t = 1) .
If T contains two consecutive int egers, then the system has only fixed

po ints.

P r oof. Obvious.•

6 . Conjectures

If the coupling coefficients a j are posit ive, then the period of each cycle of (l

given automaton A(a,0 ) is less than or equal to k.
In t he general case, the period of each cycle of a given automato n A(a , 8 )

is less than or equal to 2k .
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