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Abstract. We study the dynamics of an automaton with memory
whose equation is the following:

k-1
Tn41 = l[z aiTp—-1 — 9]

1=0
where a = (a;)i=o0..xk—1 denotes the coupling coefficients vector. We
show that if a is symmetric, then we can introduce an energy operator;
thereby we state that the periods of the automaton always divide
(k+ 1) and give a bound of the transient. We also study the case
of reversible systems and characterize reversibility versus the coupling
coefficients. Thereafter, we give some results about the pivot sums
systems. Some conjectures concerning the general case are given.

1. Introduction

In this paper, we study the dynamical behavior of an automaton with a
bounded memory. The equation of the automaton is the following:

k-1

Tpgl = 1[2 a;z,_; — O] (L.1)

i=0

where
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z, is the state of the automaton at the discrete time step n; it is a
Boolean variable;

a; are the coupling coefficients; they are real constants;
© is the threshold; it is a real parameter;

k is the size of the memory; it is an integer constant;
llu=0ifu<0and 1[ul=1ifu>0.

This automaton has been essentially introduced in order to modelize ele-
mentary electrical properties of the nervous system [1-3,13]. Equation (1.1)
is called a single neuronic equation and modelizes the behavior of a single
neuron. In this case, the resting state is represented by “0”, and the firing
state by “17.

The general dynamic of such a model is extremely rich. Indeed, it is shown
in [13] that if we connect various automata of this kind—called formalized
neurons-we can simulate every finite automaton.

This model has been studied by many authors [1-5,12,14,15] for some
particular choices of the coupling coefficients a; and the threshold ©. In this
paper, we present some results concerning these particular choices and we
give some conjectures concerning the general case. More precisely, we study
the case of palindromic systems and characterize the reversible automata
according to the values of a; and @. We also study the case of the pivot-sum
systems.

Clearly, equation (1.1) is completely defined by the pair (a,©) where
a = (ap,ay,...,a,-1). It can be transformed into a system of order k in the
classical following ways

T:{0,1}* — {0,1}*
y(n) = (y1(n),92(n); ..., yx(n)) = y(n +1) = T(y(n)) (1.2)

= (y2(n), ya(n), - ., y(n), f(y(n)))

where

k-1
f(y(n)) = 1[3_ ai ys-i(n) — O]

=0

Hence, the automaton is equivalent to a discrete iteration on {0,1}*.
Using this equivalence, (1.1) can also be seen as an automata network. In-
deed, let T1,..., T} be the components of T : y;(n + 1) = Ti(y(n)). Clearly,
yi(n+1) = Tu(y(n)) = f(y(n)), and for 1 < i < k—1, yi(n+1) = Ti(y(n)) =
Yi+r(n) = Uyipa(n) — 1/2].

The network is composed of k threshold automata (without memory).
Henceforth, the study of (1.1) can be included in the general framework of
the finite networks of threshold automata:
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Figure 1: Directed graph associated to a single neuronic equation
with memory of length £ = 4 and coupling coefficient vector a =
(ag,@1,az,a3). Circles: the state of the cell i is the previous state of
its neighbor cell i + 1. Squares: the state of the cell 4 is computed by
taking into account all the cells of its neighborhood cells 1, 2, 3, and
4; with a threshold rule f.

Yi n+ 1) Zmu yJ 9:’] (1.3)

i=1

where M = (mj;)1<ij<k is a real matrix and (0;)i=,.x is a real k-vector.
Figure 1 shows the graph associated to the neuronic equation.

In (8], Eric Goles studies the case of a real symmetric matrix M. He
proves that, in this case, the period of the cycles of (1.3) is less than or equal
to 2.

On the other hand, it is easily seen that the previous system (1.2) can be
written as follows:

k
yiln +1) = 1[3 myjy;(n) — 6]
=1
where M = (m;;)1<ij<k is a real matrix defined by

1 fj—i=1landi <k
m;; =4 ai—; fi=kFk
0 otherwise

Note that in the former example, the matrix M is not symmetric. Very few
results are known in this case.
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Moreover, to each arc (i + 1,2);=1,, we associate a weight equal to 1,
and to each arc (7, k);=;, , we associate a weight equal to ax_;.
In the following, let A(a, ©) denote the automaton defined by the equation

(1.1).

We say that two automata are equivalent if they have the same iteration
graph.

A(a, @) is a strict threshold automaton if for every x = (zo, 21, 22, - - .,
zr-1) € {0,1}*, we have

k-1
Za.-:c,- = 9 -}é 0

=0

Note that for every automaton A(a, ®) there always exists a real number ¢
such that A(a, ©-¢) is a strict threshold automaton and A(a,0) = A(a, O+
€).

Hence, without lost of generality, we can always assume that A(a, ©) is
a strict threshold automaton.

Lemma 1. Let A(a,®) be a given strict threshold automaton. Then there
always exists an equivalent strict threshold automaton A(a*,0%) such that
the coefficients a} are integers.

Proof. If the coefficients are rational a; = m;/d; then let af = M.q; and
0" = M x © where M = lem(d;).

If there exists an irrational coefficient a; then we can always find rational
numbers a such that a; < o] < a; +¢/2k where € = inf{| ¥ a;z; — ©| where
z; € {0,1}}. Clearly ¢ > 0 because we have assumed that A(a,®) is a
strict threshold automaton. We can easily verify that A(a,®) is equivalent
to A(a”, ©): since a; < af, we have

if Y aw;i—0>0then Y afz; -0 >0

If " a;z;—© < 0 then we have ¥ a;z;—© < —¢&, which implies that }_ afz; —
© < —£/2 < 0 and concludes the proof. B
From now on we shall assume that the coefficients a; are integers.

2. Symmetric memory

We assume in this section that the coupling coefficients of (1.1) form a sym-
metric word; that is, a; = ap_,—; for every i € {0,...,k—1}.

Following E. Goles (8], we can introduce an operator E characterizing the
dynamical behavior of such systems: for each x = (zq, z1,...,zx) € {0,1}5+1,
we define the operator I by

k-1 k k
E(z)=— E Efj Z A5—j-1Th—s + O Ez,-
1=0

3=0 s=j+1
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More generally for a trajectory (z:);eny we have

k-1 k k
E(mn_k,mn_k_,_l,...,m,,): — Z.’I:ﬂ_j Z Q55 1Tp—s + GJZ:::,,_,-
j=0

a=j+1 3=0

The operator £ can be seen as a kind of energy of the system. Indeed, E is
a Lyapunov function. (For a more general approach, see E. Goles [8].) The
variation of £ gives an idea of how the system reaches a stationary state.
For this purpose, we define a quantity A, by

Aﬂ = E(Infh =y In) - E(In—k—la “en 7In—1)

Let (z;);en be a trajectory of the system whose period and transient will be
denoted by p and ¢ respectively. Since the coupling coefficients a; present a
symmetric structure, we get

An = E(.’Bn_k,. . .,.‘En) = E(zn—k—l: . -’In—l)

k
W(zn e xn——k—l)(zasmn—-n — e)

s=1

Lemma 2. If z, # z,_—; then A, <0.

Proof. Suppose that z, # z,_;_;. If 2, = 1 (which implies that z,,_,_; = 0)
then

k=1

Za,:r:,,_,_l -0>0
=0

If z, = 0 then the proof is the same. B

Theorem 1. The period p of a cycle of a given symmetric memory system
A(a, @) divides k + 1.

Proof. Note that for every i we have A; < 0. Since z,4; = ¥gqp4i for
1 =0,1,2,...,k we deduce that

P
EAq+k+i = E(ﬂ:q:l‘qn, --~7zq+k) = E(rq+p:-’fq+p+17---,$q+k+p)

1=0
=0

Hence Agyri = 0foreveryi =0,1,2,...,p. Lemma 2 implies that x4 =
Tapiy for every i = 1,2,...,p which proves that p divides £ + 1. B

The preceding operator can be used in order to derive a general bound
for the length of the transient.

Theorem 2. The transient q of a given symmetric memory system A(a,©)
is bounded by
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k-1
g < (k+1)’12(0] + 3 las]]

s=0

Proof. It is easily seen that for every y = (yo,¥1,---,%) € {0,1}**! we
have

k=1 k
-2 2 =< E@)<0(k+])
=0 s =j+1
a, >0
k=1 k
Yt Z Z Ay j—1 if © 2 0
Jj=0 s =J + 1
as; < 0
and
k-1 E
=Y Y i +Ok+1)<E@l) <
3=0 s :] + 1
a; >0
k-1 k
- Y a-ja fO<0
=0 =341
a, <0
By applying this formula respectively to the vectors (4, Zg41,...,Tq4k) and

(20,1, ...,zx) we obtain

|E(2qy Tgprse e vy Tgpk) — B0, 21, ..y 24)| < (k+ 1)|0]

k-1 k
+ z: E Iaa»j"l]

=0 s=3+1
Since Zf;& f=j+1 |2;—;-1] = U’?ﬂ Y54 |a;| we can write

IE(zq:$q+1" . -1'rq+k) - E(Iﬁﬁzla- e ’Ik) < (k + l)lel

k _!_ 1 k-1
'*"(‘_"'2“_) Z |as|
=0

Applying lemma 1, we deduce that

9
E($q1$q+1r' " 1'7-'q+k) = E(l’u, Tiyee ,l??k) = zAk-{-i <0

f=1
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Let us call d = min{(—Ay1) such that Ay < 0andi=1,2,...,q}. On
the other hand, we have

k-1
d = min (@it = z4i)|-| 2 @5 Tesigs—s — O]
$=1,2,.::59 =0
Tio1 F Thti
k=1
=  min | 3" @y Trpivs—r — O] since |zpq; — 24| = 1.
2=1,2,...,q s=0
Api #0

As the coeflicients a; are integers, we can easily verify that d > 1/2. Let
g = a+ 3 with

a = card {i < ¢ such that Axy; =0}
B = card {7 < g such that Ay, # 0}

Clearly, we have a < kf3 since (Ag4i)ocicq cannot contain (k + 1) successive
zeros. So we get

dx B < (k+1)[0]+ %k‘;tlasll

with d > 1/2.
As ¢ = a + 8 we can write ¢ < (k + 1)/, which implies that

k-1
< (k+1D210] + 3 lad]]

s=0
|
The preceding analysis can be extended to the following case:
=
Ty = l[z a;T,_; — O] (2.1)
where the coefficients a; are such that a; = apyr—i—1 fori € {r,r+1,..., k—1}.

Lemma 3. The automaton defined by (2.1) is equivalent to the following
E4r-1
Tng1 = 1[ 2 aixn‘i o O] (2.2)
=0
with
y { a; fi=rr+1,...k—1
a" -

0 otherwise.

Corollary 1. If (z;)ien is a trajectory of the system (2.1) with a transient
length ¢ and a period p, then we have
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Figure 2: Iteration graph associated with example 2.

the period p always divides (k +r + 1),
the transient q is bounded by

k-1

¢ < (b+r+1)210] + 3 Jail]
Proof. Follows directly from theorems 1 and 2. B
Example 1. Let k=3,0 = -25and a = (—2,—1,-2)
Tntl = 1{2»5 = (23:?1 +aTn1+ 2.‘1':““2)]

We can sec on figure 2 that A(a,t) possesses two cycles and that the period
of each cycle divides (k + 1).

Corollary 2. Let A(a, @) be a given symmetric memory system whose co-
efficients are such that

a; € {—1,0,1} then ¢ < 3k{k+1)
(polynomial bound versus exponential possible states).
Proof. Obvious. B

We now consider a particular case of the symmetric memory. We shall
assume that the coupling coeflicients are of the form ay; = 1 and agrq = 0.

Proposition 1. IO > [k/2] or © < 0 then A(a,®) has only fixed
points 0 or 1 and no cycle of order greater than 1.

If0 < © < [k/2] then A(a,®) has a unique globally attractive cycle
of order 2 : (0,1).
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Proof. The first part of the proposition is obvious since the sign of © +
S a;x,_; is always the same.

In order to prove the second part, remark that since as;4; = 0, we can
assume that k is odd. Let (zo,2i,...,%%_1) be an initial configuration and
let C be its associated cycle of period p. To prove that C' is reduced to (0, 1),
we shall show that C' has neither two consecutive 1 nor two consecutive 0.

Since k is odd, we have

Togr = (Zn + Znz+ Tn-a+ ... + Znk41) — O] (2.3)

Let us assume that C has two consecutive 1: there exists n such that z,_;_; =
Tn-r =1 withn — k — 1 > ¢, where ¢q denotes the length of the transient.

Note that the vector a = (ag, ay, @q, . .. ,ax-1) is symmetric, which implies
that p divides (k+1). Thus, &, = 2p_j—; =1 and 2,4y = z,_; = 1. On the
other hand, we have

Zntz = 1(Znpr + Tacr + oo F Trogy2) — O]

= 1(Za-1+Taa+...+ Tnr42+ Tnya) — O]
1[($n—1 + Th-gt e + Tn—k42 + xn—-k) - e]
Ty

which proves that z, = z,4; = Tpy2 = 1. With the same reasoning, we
get X,4r = 1. Hence C = (1,1,...,1) which gives a contradiction to the
hypothesis © < [k/2].

If we assume that C' has two consecutive 0, we can easily show in a similar
way that x4, = 0 for any integer r > 1, which leads to the same conclusion.

Corollary 3. If0 < © then ¢ < 3(k+1)*[k/2].
IFO© <0 then q < (k+ 1)*(1 + [k/2]).

Proof. A direct consequence of theorem 2. Hl

3. Positive coupling coefficients

Note that if the coupling coeflicients a; are positive, then the operator T
defined as follows is a monotone map:

T Xy = (xn-k+l1$n—k+2: “en 13;11) ¥ (zn—k+2s Tp—k43y+-21 Ty, f(xn))

where

k-1
F(Bnarsts Tnkg2s-- 02 Tn) = 1[2 a; Tn-; — O]
i=0
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Hence it is well known that if T’ generates a p-cycle x, T'(x) T?%(x), ..., T?"'(x)
(with p > 1) then x, T'(x), T?(x),...,T?7}(x) are uncomparable relatively
to the partial ordering. If there exist two integers n and m such that x, =
(Tn—kt1s Tnok42s-- -5 Tn) a0d X = (Tm—k+1, Tm—k42, - - -  Tm) are comparable,
then we have a cycle whose length divides |m — n|. In particular, if there
exists an integer n such that x, and x,4, are comparable, then the sequence
(2)ien converges toward a fixed point.

Now let us see the particular case when the coupling coefficients are de-
creasing; i.e.,

0<a_1<a2<...Sa;;;<a;<...Zq

Proposition 2. If the coupling coefficients are decreasing positive then the
automaton A(a, ©) has only fixed points.

Proof. We shall prove that if z, = 0 then z,4, = 0.

Let us assume that z, = 0, which is equivalent to apz,—; + a1z,—2 +
a3Tp_3 + ... + ap_1Zp_r — © < 0. Then we have apz, + a1Tn_y + ... +
ap_1Tn—k41 — O < QoTn—1 + G1Tn—2 + ... CGk—2Tn_kt1 + G—1Zn_k — O < 0,
which implies that 2,47 = 0.

Note that if the coupling coefficients are increasing positive, then we have
not the same result as before. B

Example 2.
Tpt1 = lzn + 2201 + 4752 + 623 — 5.5] (3.1)

As it is shown in figure 3, equation (3.1) admits two cycles of period 4 and
2 and two fixed points.

Remark that the period of each cycle divides k. This is a direct consequence
of theorem 4 since we have a;_; — © < 0.

4. Reversible systems

In general, the automaton A(a, ©) is not reversible in the sense that from two
different initial configurations (z,_rt1; Ta—ks2s -- - Tn) a0 (Ynoki1s Yn—ks2s
... Yn) We can get the same final state.

Let us associate to the automaton A(a,®) the operator T defined on
{0,1}* by

X = (Tg,T1,- -+, Th—1) = T(X) = (21,22, .-, Tho1, (X))

where

k-1
f(IOs Ligeney -Tk--l) = I[Z QiTf—1—i — e]
k=0
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0000x)
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Figure 3: Iteration graph associated with example 2.

Definition 1. A(a, ®) is a reversible automaton if T' is a bijection.

Definition 2. A(a,®) is a shift if f(zo,21,...,%Tr_1) = 2o; that is,
T(l‘o, Biyevs ,xk_l) = (I], b5, FRPSEI o T 8 Io).

A(a, ©) is an antishift if f(zo,z1,...,24-1) =1 — z0.

Clearly, if A(a, ©) is a shift, then for every x in {0, 1}* we have T%(x) = x,
and if A(a,t) is an antishift, then we have T%(x) = x. We deduce from this
remark that if A(a,©) is a shift or an antishift then A(a,t) is reversible.
Moreover, we have T-! = T*1 if A(a,©) is a shift and 7' = T%-! if
A(a,©) is an antishift.

Proposition 3. A(a,®) is reversible if and only if A(a,®) is a shift or an
antishift.

Proof. We shall prove that if A(a,®) is reversible, then A(a,©) is a shift
or an antishift. We distinguish three cases: aj_y > 0, ay_; < 0, ax_y = 0.
If ap_y > 0, then we have

k-2 k-2
S awpi— 0 <apg+ YT — 0
=0 =0
which implies that f(0,zy,22,...,2¢-1) = 0 and f{l,z4,22,...,244) = L.
Hence A(a,©) is a shift.
If a5y <0, we have
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k-2 k-2
ap-1 + zaimk—l—s - Z 4;Tg——; — O
i=0 i=0
which implies that f(0, 1, 22,...,2x_1) = 1 and f(l,2y,29,...,2k-1) = 0.
Since T is reversible, f(0,x1,29,...,25_1) # f(1,21,22,...,25-1). Hence

A(a, ®) is an antishift.
If ar_1 = 0, then T cannot be a bijection. Indeed for two different ele-
ments, we have

f{ovxlaw‘h- . .,.’L'k_1) = f(1,$1,$2,. ..,l'k_l)
thus T is not a bijection.
Proposition 4. A(a,©) is a shift if and only if
[ z a; — (“)] <0
i<k-2 and a;<0
and
[ax-1 + > «—0]20 (a)
i<k-2 and a;>0
A(a, ®) is an antishift if and only if
| Y o —@]| = 0
i<k—2 and a;<o0
and

a1 + >, w—0]<0 (8

i<k-2 and a;>0

Proof. Assume that A(a,®) is a shift. For x = (21,23, ..., 23_;) in {0,1}**
define (0,x) = (0, 21,3, . .., 2x—1) and (1,x) = (1,21, 22,...,T4-1). We have
f(0,x) =0 and f(1,x) = 1.

Define
P = {i€{0,1,2,...,k— 2} such that ¢; > 0},
N = {i€{0,1,2,...,k— 2} such that a; < 0}.

Let ¥ = (y1,¥2,- -+ »¥x—1) € {0,1}*" be such that

0 ifk—-i—-1eXN
yi=4 1 ifk—21-1€P
otherwise

where y; = * means that y; can take any value in {0,1},

f(oyyl’y%"-:yk—l)zl[ Z ﬂ;’*@]:O

i<k—2 and a;<0



Dynamical Behavior of a Neural Automaton with Memory 173

implies that

z: ﬂ;—e<0

i<k-2 and a;>0

Let now z = (21, 22,...,2x-1) be such that z; = 1 — y;.

f(lz1,22, -0y 25m1) = lag—1 + Z a;—0)=1
i<k—2 and «;>0

implies that

ap_1 + Z a;—02>0

i<k-2 and a;>0

Conversely, let us assume that the formula (@) is verified.

Since Yr 2 a;zi_1i — © < 2ick-2 and e>0 % — O < 0, we deduce that
f(0,zy,22,...,25—1) = 0 and hence A(a, ©) is a shift.

In a similar way we can show that f(1,x)=1. 1

Theorem 3. 1. A reversible automaton A(a, ®) has only cycles of length
L such that

L divides k if A(a,®) is a shift (i.e. ax_; > 0),
L divides 2k if A(a, ©) is an antishift (i.e. az-y <0),

2. The automaton defined by equation (1.1) cannot have a cycle of length
g%

Proof. (1) is an immediate consequence of the previous remarks. (2) If
A(a,©) has a cycle of length L = 2*, then the associated operator T has also
a cycle of length L = 2*, and thus is bijective, which leads to a contradiction
when k is greater than 1. B

Many properties of shift and antishift operators are given in [12]. More-
over, note that if we have an automaton with a geometric memory (i.e. case
where a; = —(b') with b > 0) then for every 0 < b < 1 the operator 7' is
never bijective. But if we have b > 2 then there always exists O ) = 5%:—:5
such that the operator 7" is bijective.

From proposition 3 we deduce that there exist only two different reversible
memory systems: the shift and the antishift. Hence if ax_; is positive the
reversible system is equivalent to A(a,®) with a = (0,0,0,...,0,1) and
© = 1/2 (shift). Otherwise, if a,_; is negative, the reversible system is
equivalent to A(a,®) with a = (0,0,...,0,—1) and © = —1/2 (antishift).
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5. Pivot sums

We first study the case of a single pivot and then we shall treat the general
case.

Definition 3. i is 1-pivot if for every n, @p41 = 1 implies z,_; = 1.
i is O-pivot if for every n, z,41 = 0 implies z,—; = 0.
t is an antipivot Iif for every n, z,_; = 0 is equivalent to ,4; = 1.
Lemma 4. 1 is 1-pivot if and only if
k-1
Z a; — Q<0
i=0

J#tanda; >0
1 is O-pivot if and only if

k-1
a; + Z aj—GZU
i=0
J#randa; <0

¢ Is an antipivot if and only if

k-1 k-1
a; + Z (Ij(@S E a;
j#ianda; >0 j#Fianda; <0

Proof. Follows from direct computations. B

Theorem 4. Let p be the period of a cycle of the automaton A(a, ©).
If 7 is a O-pivot or a 1-pivot then p divides (i + 1).
If i is an antipivot then p divides 2(i + 1).

Proof. Assume that 7 is a I-pivot. In order to prove that p divides (i 4+ 1),
we introduce the following operator

Ei(n) = Tp41 — Tp—i-

Tt is clear that E; is a negative function; i.e., for every n, F;(n) < 0. Call ¢
the length of the transient of the trajectory and assume that there exists an
integer n > ¢ + ¢ such that F;(n) < 0. We have then z,+1 < ®,—;. Since E;
is a negative function, we have

Tn—itp(i+1) < Ty—it(p-1)(i+1) L B Tnt1 < Tp—i-
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Since p is the period of the trajectory, we have z,_ ;i pis1) = Tn_i. Thus we
get a contradiction. We deduce that E;(n) = 0 Vn > i+ ¢ which implies that
the period divides (i +1).

The proof for the 1-pivot and the antipivot is similar. B

We shall now treat two cases of pivot sum:

Definition 4. Let 7 be a subset of {0,1,...,k—1}.
1. T represents 1-pivot sum if
Bo =1 SNV eT @=L
2. T represents 0-pivot sum if

Top1=0=2>VieT z,;=0.

Lemma 5. 1. 7 represents 0-pivot sum if and only if
k-1
su i—0]<0
iE‘IP[ Z 4; ]
y=9

J#tanda; >0
2. T represents 1-pivot sum if and only if

k-1
lléljf_[ﬂ. + z aj—G] Z 0
7=0
j#ianda; <0

Proof. Follows from a direct computation. B

Corollary 4. If we have 0-pivot sum or 1-pivot sum, then the period p
always divides ged; .1 (7 + 1) (ged = great common divisor).

Proof. Follows directly from the fact that each ¢ € T constitutes a pivot of
the system.

Corollary 5. Let T represent i-pivot sum (witht =0o0ri=1).
If T contains two consecutive integers, then the system has only fixed
points,

Proof. Obvious. B

6. Conjectures

If the coupling coefficients a; are positive, then the period of each cycle of a
given automaton A(a,®) is less than or equal to k.

In the general case, the period of each cycle of a given automaton A(a, )
is less than or equal to 2k.
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