Complex Systems 2 (1988) 39-44

Scaling Relationships in Back-propagation Learning

Gerald Tesauro
Bob Janssens
Center for Complex Systems Research, University of lllinois at Urbana-Champaign
508 South Sixth Street, Champaign, IL 61820, USA

Abstract. We present an empirical study of the required training
time for neural networks to learn to compute the parity function using
the back-propagation learning algorithm, as a function of the number
of inputs. The parity function is a Boolean predicate whose order is
equal to the number of inputs. We find that the training time behaves
roughly as 4™, where n is the number of inputs, for values of n between
2 and 8. This is consistent with recent theoretical analyses of similar
algorithms. As a part of this study we searched for optimal parameter
tunings for each value of n. We suggest that the learning rate should
decrease faster than 1/n, the momentum coefficient should approach
1 exponentially, and the initial random weight scale should remain
approximately constant.

One of the most important current issues in the theory of supervised learn-
ing in neural networks is the subject of scaling properties [4,13], i.e., how well
‘the network behaves (as measured by, for example, the training time or the
maximum generalization performance) as the computational task becomes
larger and more complicated. There are many possible ways of measuring
the size or complexity of a task; however, there are strong reasons to believe
that the most useful and most important indicator is the predicate order k,
as defined by Minsky and Papert [6]. The exact technical definition of the
predicate order of a Boolean function is somewhat obscure; however, an intu-
itive way of understanding it is as the minimal number of input units which
can provide at least partial information as to the correct output state. While
analytic results for scaling dependence on k has not been carried out for back-
propagation or Boltzmann machine learning, analysis of related algorithms
[1,2,14,15] suggests that the minimum training time, and the minimum num-
ber of distinct training patterns, should increase ezponentially with the order
k, probably as ~ ¢*, where ¢ is some numerical constant, and possibly as bad
as ~ n*, where n is the number of input units.

In this brief technical note, we report an empirical measurement of the
scaling of training time with predicate order for the back-propagation learn-
ing paradigm. The task chosen for training the networks was the parity

© 1988 Complex Svstems Publications. Inc.

40 Gerald Tesauro and Bob Janssens

function, i.e. the function which returns 1 if an odd number of inputs units
are on, and 0 if an even number of input units are on. We chose the parity
function because of its simple definition and symmetry properties, because
an analytic solution for the network weights is known [9], and because n-bit
parity is known to have predicate order k = n. This can be seen from the
intuitive definition of predicate order. For n-bit parity, no subset of input
units of size less than n provides any information as to the correct answer;
this must be determined by observing all n input values. Thus, the parity
function has the maximum possible predicate order, and in that sense should
be representative of the hardest possible functions to learn using standard
back-propagation learning.

Qur empirical study was carried out as follows. For each value of n
examined, we set up a back-propagation network with n input units, 2n
hidden units, and 1 output unit, with full connectivity from inputs to hiddens
and from hiddens to output. We chose to use 2n hidden units, because the
minimum required number of hidden units can be shown to be n [9], and
with more than the minimal number the problem of trapping in local minima
should be reduced [8]. The initial weights were set to random values on a scale
r which was varied as a part of the study. The 2" training patterns were then
cycled through in order, and the weights were adjusted after each pattern.
The learning rate and momentum parameters € and a, as defined in [12], were
also varied in this study. The training continued until the network performed
correctly on each of the 2™ possible patterns, with correct performance being
defined as coming within a margin of 0.1 of the correct answer. If the network
had not reached perfect performance by a certain cutoff time, the training
run was abandoned, and the network was reported to be stuck in a local
minimum,

The question of parameter tuning is highly non-trivial in this study. When
comparing results for two different networks of size n and n’, it is not at all
clear a priori what setting of parameter values constitutes a fair comparison.
We decided to search for, at each value of n, the values of ¢, @ and r which gave
optimal average training time. This necessitated trying empirically several
different combinations of parameter settings, but produced added interesting
results as to how the optimal parameter values scale with increasing n.

Early in the study, we found that the learning of the parity function is an
extremely noisy stochastic process, with wide variations in the training time
from run to run over many orders of magnitude. In order to achieve good
statistics on the average training time, it was necessary to do 10,000 learning
runs for each data point (n,¢,a,r). This produced average training times
with at least two significant figures. There is an additional problem in that
for the learning runs which become stuck in local minima, the training time
is infinite, and thus a direct averaging of training times will not work. We
defined the average training time to be the inverse of the average training
rate, where individual training rates were defined as the inverse of individual
training times. With this definition, there is no problem in computing the
average, since the training rate for a run stuck in a local minimum is zero.

Scaling Relationships in Back-propagation Learning 41

n Copt opt Topt Tapt Top£/2n Topt/‘/in
2130£2] 944 .01 |254+.2 95+ 2 24 5.9
31202 96£.01 [25+.5 265 £ 5 33 4.1
4112+£2] 97+.02 |28+ .5 1200 + 60 5 4.5
5[7+£1 | 98+.01 [25£.5| 4100£ 300 130 4.0
6| 31 |.985+.01 [2.5] | 20000 + 2500 310 4.9
7| 2 [.99] [2.5] (100000 800 6.1
8| [1.5] [.99] [2.0] [500000] 2000 7.6

Table 1: Measured optimal averaging training times and optimal pa-
rameter settings for n-bit parity as a function of number of inputs n.
The optimized learning parameters were: learning rate ¢, momentum
constant a, and initial random weight scale r. For 2 < n < 5, 10000
runs at each combination of parameter settings were used to compute
the average. For 6 < n < 8, only a few hundred runs were made.
Quantities in brackets were not optimized.

Our results are presented in table 1. Note that the average training time
increases extremely rapidly with increasing n. Since there is a further increase
in simulation time proportional to the number of weights in the network (~
n?), it became extremely difficult to achieve well-optimized, accurate training
times beyond n = 5. (We estimate that ~ 10 logic operations were used in
the entire study, taking several weeks of CPU time on a Sun workstation.) For
the final two values of n, no attempt was made to find the optimal parameter
values, and the reported optimal training times are probably only accurate
to within 50%. Also note that when the average training times are divided
by 2™ (this gives the required number of repititions of each training pattern),
the resulting figures are still definitely increasing with increasing n; thus the
training time increases faster than 2". Dividing by 4%, however, produces
figures which are roughly constant. This provides suggestive evidence (which
is by no means conclusive) that the training time increases roughly as ~
4" This would be consistent with analysis of related algorithms. Volper
and Hampson [1,2] discuss several related learning algorithms which utilize
a mechanism for adding new hidden nodes to the network, and which are
capable of learning arbitrary Boolean functions. For hard problems such as
parity, these algorithms generally require training times ~ 2%, with ~ 2%
hidden nodes; thus training times ~ 4™ with a fixed polynomial number of
hidden nodes are reasonable.

Regarding the issue of optimal parameter values, we discuss each in turn.
The optimal value of ¢ appears to fall off somewhat faster than 1/n, possibly
as n~%? or n~2. Hinton [3] suggests on the basis of fan-in arguments that
the learning rate should decrease as 1/n. Our results support the notion that
the learning rate should decrease with increasing fan-in, although the exact
rate of decrease is undetermined.

The optimal momentum coefficient appears to approach 1 as n increases.
We cannot be sure whether the rate of approach is exponential or polynomial;

42 Gerald Tesauro and Bob Janssens

€

16 20 24 28 32 36 40
98 152.0 | 129.7 1244
(.0219) | (.0235) (.0389)
96 | 130.8 1122 | 1058 | 101.6 | 99.5 | 996
(.0122) (.0096) | (.0136) | (.0179) | (.0287) | (.0482) | (.0698)
o |01 1083 | 992 | 95.0 | 95.0 | 98.7 | 106.1

(.0105) | (.0117) | (.0255) | (.0425) | (.0759) | (.1291)

92 1180 | 1020 | 951 | 959 | 101.9 | 111.9
(.0106) | (.0097) | (.0194) | (.0509) | (.1047) | (.1733)

90| 116.6 101.2 97.6 102.7
(.0109) | (.0142) | (.0418) | (.0988)

88| 1166 | 1033 | 104.0
(.0080) | (.0205) | (.0672)

Table 2: Average training times, and in parentheses, fraction of runs
stuck in local minima, for 2-bit parity (XOR) as a function of learning
rate ¢ and momentum coefficient a. In each, the initial random weight
scale was r = 2.5.

however, an expontential approach would be consistent with the following
simple argument. The quantity (1 — «) is essentially a decay term which
indicates how long the weight change due to a particular pattern persists.
In other words, the use of a momentum term is in some sense equivalent
to computing a weight update by averaging over a number of patterns. If
the decay rate decreases exponentially, say as 27", this would indicate that
the optimal number of patterns to average over increases as 2", or that the
fraction of patterns in comparison to all possible patterns remains constant.

Finally, regarding the optimal scale of the initial random weights, we
were surprised to find that this parameter remained approximately constant
as n increased. We would have expected some sort of decrease in the random
weight scale. For example, one could argue that the average level of activation
of a hidden unit due to n random weights from the input units would be of
order n'/?; thus the weight scale should decrease as n=1/? to keep the input
constant. However, this does not appear to be the case empirically.

It is also interesting to note what happens as the parameters are varied
from their optimal values. For all three parameters we find as the parameter
is increased, the learning goes faster for runs which do not get stuck in local
minima. However, once the parameter goes beyond the optimal value, there is
a rapid increase in the fraction of learning runs which do become stuck. Thus
the parameter values we report are essentially the largest possible values at
which one can operate without getting stuck in local minima an unacceptable
percentage of the time. Table 2 provides an illustration of how the average
training time and the fraction of runs stuck in local minima behave as the
parameters € and « are varied, for the case n = 2.

The apparent scaling behaviors we have found for the training times and

Scaling Relationships in Back-propagation Learning 43

parameter values are somewhat counter-intuitive, and motivate the search
for an analytic explanation. Also we point out that the requirement that the
network learn the parity function perfectly is a severe requirement, which
may have contributed to the extremely poor scaling behavior. It would be
interesting to measure the training time needed to reach some fixed level of
performance less than 100%, although we conjecture that such training times
would still increase exponentially.

In conclusion, while it is difficult to extrapolate to the large-n limit on the
basis of values of n between 2 and 8, we do have suggestive evidence that the
required training time for the back-propagation algorithm increases exponen-
tially with the predicate order of the computation being trained. This would
indicate that earlier enthusiatic projections of the use of back-propagation to
learn arbitrarily complicated functions were overly optimistic. The learning
of such functions, while no longer impossible as with perceptron networks,
still remains effectively intractable. Thus back-propagation, and probably all
known supervised learning algorithms for connectionist networks, should be
used only for learning of low-order computations. For high-order problems
such as connectedness and parity, alternative procedures should be investi-
gated.

Acknowledgements

We thank Terry Sejnowski for providing the back-propagation simulator code
and for helpful discussions. This work was partially supported by the Na-
tional Center for Supercomputing Applications.

References

[1] S. E. Hampson and D. J. Volper, “Linear function neurons: structure and
training,” Biological Cybernetics, (1986) 203-217.

[2] S. E. Hampson and D. J. Volper, “Disjunctive models of boolean category
learning,” Biological Cybernetics, (1987) 121-137.

[3] D. C. Plaut, S. J. Nowlan and G. E. Hinton, “Experiments on learning by
back propagation,” Carnegie-Mellon University, Department of Computer
Science Technical Report (1986) CMU-CS-86-126.

[4] G. E. Hinton, “Connectionist learning procedures,” Carnegie-Mellon Univer-
sity, Department of Computer Science Technical Report (1987) CMU-CS-87-
115.

[5] Y. Le Cun, “A learning procedure for asymmetric network,” Proceedings of
Coguitiva (Paris), 85 (1985) 599-604.

[6] M. Minsky and S. Papert, Perceptrons, (MIT Press, Cambridge, MA, 1969).

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing:

44

(8]

(10]

[11]

Gerald Tesauro and Bob Janssens

Explorations in the Microstructure of Cognition. Vol. 1: Foundations, D. E.
Rumelhart and J. L. McClelland eds., (MIT Press, 1986) 318-362.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, 323 (1986) 533-536.

D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations,
(MIT Press, 1986).

D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. Vol. 2: Psychological
and Biological Models, (MIT Press, 1986).

T. J. Sejnowski, P. K. Kienker and G. E. Hinton, “Learning symmetry groups
with hidden units: beyond the perceptron,” in Evolution, Games and Learn-
ing: Models for Adaptation in Machines and Nature, D. Farmer et al. eds.,
(North-Holland, 1986) 260-275.

T. J. Sejnowski and C. R. Rosenberg, “Parallel Networks that Learn to
Pronounce English Text,” Complex Systems, 1 (1987) 145-168.

G. Tesauro, “Scaling relationships in back-propagation learning: dependence
on training set size,” Complex Systems, 1 (1987) 367-372.

L. G. Valiant, “A theory of the learnable,” Communications of the ACM,
27:11 (1984) 1134-1142.

L. G. Valiant, “Learning disjunctions of conjunctions,” Proceedings of the
International Joint Conference on Artificial Intelligence, (1985) 560-566.

