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A bstrac t. We present an empirical st udy of th e required training
time for neural networks to learn to compute the parity function using
the back -propagation learning algorithm, as a function of t he numb er
of inp uts. The parity funct ion is a Boolean predica te whose order is
equal to th e number of inpu t s. \Ve find t hat t he t rain ing time behaves
roughly as 4" I where n is the num ber of inp ut s, for values of n between
2 and 8. T his is consistent with recent t heoretical analyses of similar
algorit hms. As a part of thi s stu dy we sea rched for optimal par ameter
tunings for each value of n. We suggest that the learning rate should
decrease faster than lin, the momentum coefficient should approach
1 exponentially, and the initial random weight scale should remain
approximately constant.

One of th e most important current issues in th e theory of supervised learn­
ing in neural networks is the subject of scaling prop ert ies [4,] 3], i.e., how well

"the networ k behaves (as measured by, for exa mple, th e t rain ing t ime or the
maximum generalizat ion perform ance) as the comp utational ta sk becomes
larger and more comp licated . T here are many possible ways of measuring
the size or complexity of a task; however, there are st rong reasons to believe
that th e most useful and most importan t indicator is the predicat e order k,
as defined by Minsky and Paper t [61. The exact technical definition of the
predicate order of a Boolean funct ion is somewhat obscure; however , an int u­
itive way of underst anding it is as the minimal numb er of input uni ts which
can provide at least partial information as to the correct output st ate. Wh ile
analyti c results for scaling dependence on k has not been carr ied out for hack­
propagat ion or Boltzmann machine lea rning, analysis of related algorithms
[1,2,14,15) sugges ts th at the minimum traini ng t ime, and the minimum num­
ber of distinct t raining patterns, should increase exponentially with the order
k, probabl y as '""J ck , where c is some numerica l constant, and possibly as bad
as '"'" nk, where n is th e number of input units.

In this brief technical not e, we report an empirical measurement of the
scaling of training tim e with predicate order for the back-propagation learn­
ing paradigm. Th e task chosen for train ing the network s was t he parity
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fun ction , i.e. the funct ion which returns 1 if an odd number of inpu ts unit s
are on, and 0 if an even number of input un it s are on. We chose the parity
funct ion because of it s simp le definition and symmetry propertie s, becau se
a n ana lyt ic solut ion for the network weights is known [9], and because n-bi t
pa r ity is known to ha ve predica te order k = n . T his can be seen from th e
in tui ti ve defini tio n of predica te order. For n- bit parity, no subset of input
units of size less than n provides any information as to the correct an swer;
t his must be determined by observing all n input valu es. Thus, t he parity
function has the m aximum possib le predicate order , and in that sense sho uld
be represent ati ve of the hardest possible funct ions to learn using standard
ba ck-propagat ion learning .

Ou r empirical st udy was carried out as follows. For each value of n
examine d , we set up a back-propagat ion network with n input units, 2n
hidden units, and 1 output uni t , with full connectivi ty from inp ut s to hiddens
and [rom hidd ens to ou tpu t. We chose to use 2n hidden uni t s, because the
minimum requ ired number of hidden unit s can be shown to be n [9], and
with more th an the minima l number th e problem of trapping in local min ima
should be reduced [8] . Th e init ial weights were set to random valu es on a scale
7' which was varied as a par t of the study. The 2n t raining patterns were then
cycled through in order, and the weights were adjusted afte r each pa t tern.
The lea rn ing rate and momentum parameters t and (Y, as defined in [12], were
a lso varied in this st udy. The training continued unti l the network pe rformed
cor rect ly on each of the 2n possib le pa tterns, wit h correct performance be ing
defined as coming within a margin of 0.1 of the correct an swer. If t he network
had not reached pe rfect performance by a cer tain cutoff t ime, the t raining
run was abandoned, and th e net work was reported to be stuck in a loc al
rrummum.

The question of parameter t uning is high ly non-trivia l in thi s st udy. Wh en
com pa ring results for two different networks of size n and n', it is no t at all
clear a priori what set t ing of param eter values constitutes a fair compari son .
V\'e decide d to sea rch for, at each value of n , the va lues of e, 0: and r which gave
optimal average tra ining time . Th is necessitated trying empiricall y several
different combinatio ns of par am et er set t ings, bu t produced added int eresting
results as to how the optimal parameter values scale with increasing n .

Early in th e st udy, we found that th e lea rni ng of the pari ty function is an
ext reme ly noisy stochas t ic process, with wide variations in the t raining time
from run to ru n over many orders of magnitude. In order to ach ieve good
stat ist ics on the average training time, it was necessary to do 10,000 learning
run s for each data po int (n ,(, (Y ,r). Th is produced average t rain ing times
with at least two significant figur es. T here is an add itional problem in that
for the learning run s which become stuck in local minima, t he training t ime
is infini te, and th us a dir ect averaging of train ing times will not work. VVe
defined the average training t ime to be th e inverse of the average t raining
rate, where individual train ing ra tes were defined as the inverse of individual
t ra ining t imes. With th is definition , t here is no problem in comput ing th e
avera.ge, since the t raining rate for a ru n stuck in a local min imum is zero.
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n font Q'Oll t r ont Tont Tontl2n Tontl4n

2 30 ± 2 .94 ± .01 2.5 ±.2 95 ± 2 24 5.9
3 20 ±2 .96 ± .01 2.5 ± .5 265±5 33 4.1
4 12 ±2 .97 ± .02 2.8± .5 1200 ± 60 75 4.5
5 7±1 .98 ± .01 2.5 ± .5 4100 ± 300 130 4.0
6 3±1 .985 ± .01 [2.51 20000 ± 2500 310 4.9
7 [2] [.99] [2.51 [100000) 800 6.1
8 [1.5] [.991 [2.oi [500000) 2000 7.6

Table 1: Measured optimal averaging training times and opt imal pa­
rameter sett ings for e-blt parity as a funct ion of number of inputs n .
The optimized learning parameters were: learning rate c, momentu m
constant e, and initia l random weight scale r . For 2 ::; n ::; 5, 10000
runs at each combination of parameter settings were used to compu te
the average. For 6 ::; n S 8, only a few hundred runs were made.
Quantit ies in brackets were not opt imized.
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Our result s are presen ted in table 1. Note tha t th e average training t ime
increases extremely rapidly with increasing n . Since there is a fur th er increase
in sim ulat ion t ime proportional to the number of weights in th e network (""
n 2 ) , it became ext remely difficu lt to achieve well-optimized , accurate t ra ining
t imes beyond n = 5. (We estimate that rv 1014 logic op eration s were used in
the ent ire study, taking several weeks of CPU t ime on a Sun workstation. ) For
the fina l two values of n, no attempt was made to find the optimal paramet er
values , and the reported op t imal training times are probably only accurate
to wit hin 50%. Also note that when the average t ra ining times are divi ded
by Z1\. (this gives the required number of repititions of each training pa t tern),
th e resul t ing figures ar e still defin ite ly increasing with increasing n; thus the
t raining time increases faster th an 21\. . Dividing by 4\ however , produces
figur es which are roughly constant. T his provides suggest ive evidence (which
is by no means conclusive) that th e training t ime increases roughly as rv
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• This would be consistent with analysis of related algorithms . Volper

and Hampson [l,Z] discuss several related learning algorithms which ut ilize
a mechanism for adding new hidden nodes to the network, and which are
capable of lear ning arbitrary Boolean funct ions . For hard problems such as
parity, these a lgor ithms generally require training t imes rv Z" , with rv 2n

hidden nodes; thus train ing times rv 41l with a fixed polynomial number of
hidden nod es are reasonable .

Regarding the issue of optimal parameter values, we discuss each in tu rn .
The optimal value of t: appears to fall off somewhat faster than lin , possibly
as n-3/ 2 or n- 2• Hinton [3] suggests on th e basis of fan -in arguments tha t
the learning rate shou ld decrease as lin. Ou r results support th e notion that
t he learning rate should decrease with increasing fan-in, although the exa ct
rate of decrease is undetermined.

T he opti mal momentum coefficient appear s to ap proach I as n increases.
We canno t be sure whet her the rate of approach is exp onential or po lynomial;
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e
16 20 24 28 32 36 40 44

.98 152.0 129.7 124.4
(.0219) (.0235) (.0389)

.96 139.8 112.2 105.8 101.6 99.5 996 102.6
(.0122) (.0096) (.0136) (.0179) (.0287) (.0482) (.0698)

o .94 108.3 99.2 95.0 95.0 98.7 106.1
(.0105) (.0117) (.0255) (.0425) (.0759) (.1291)

.92 118.0 102.0 95.1 95.9 101.9 111.9
(.0106) (.0097) (.0194) (.0509) (.1047) (.1733)

.90 116.6 101.2 97.6 102.7
(.0109) (.0142) (.0418) (.0988)

.88 116.6 103.3 104.0
(.0080) (.0205) (.0672)

Table 2: Average tra ining times , an d in parent heses, fraction of runs
stuck in local minima, for 2-bit parity (XOR) as a Iunction oflearning
rate e and mom ent um coeffi cient fro In each, the initial random weight
scale was r = 2.5.

however , an expontential approach would be consistent with t he following
simple argument . The quantity (1 - 0) is essent ially a decay te rm which
ind icates how long th e weight change due to a pa rt icu lar pattern persists.
In other words, the use of a momentum term is in some sense equ ivalen t
to compu ting a weight upd ate by averaging over a numb er of patterns. If
t he decay rate decreases exponent ially, say as 2- n

, t his would indicate that
the optimal number of patterns to average over increases as 2n

, or that the
fract ion of pat terns in comparison to all possible patterns remains constant.

Finally, regard ing the optimal scale of the init ial random weight s, we
were surprised to find that this par ameter remained ap proximately constant
as n increased. We would have expected some sort of decrease in the random
weight scale. For exam ple, one could argue tha t the average level of act ivation
of a hidden unit due to n ra ndom weights from the inp ut units would be of
orde r n 1/ 2 ; thu s the weight scale should decrease as n- 1/ 2 to keep the input
constant . However , this does not app ear to be the case empirically.

It is also inte rest ing to note what happens as the parameters are varied
from their optimal values. For aUthree parameters we find as the parameter
is increased, the learn ing goes faste r for runs which do not get stuck in local
minima . However 1 once the parameter goes beyond the optimal value, there is
a rapid increase in the fraction of learn ing runs which do become st uck. Thus
the parameter values we report are essentially the largest possible values at
which one can operate wit hout gett ing stuck in local minima an unacceptable
perce ntage of the t ime. Ta ble 2 provides an illustration of how the average
training time and the fraction of runs stuck in local minima behave as the
parameters c and 0' are varied , for the case n = 2.

The apparent scaling behaviors we have found for the traini ng times and



Scaling Relationships in Back-propagation Learning 43

parameter values are somewhat counter-intuitive, and moti vate the search
for an analyt ic explanat ion. Also we poin t out that the requirement that the
network learn the par ity function perfectly is a severe requirement , which
may have contributed to the ext remely poor scaling behavior. It would be
interesting to measu re the tra ining time needed to reach some fixed level of
performance less t han 100%, alt hough we conjecture that such train ing times
would st ill increase exponentially.

In conclusion, while it is difficult to ext rapolate to the large-n limit on the
basis of values of n between 2 and 8, we do have suggest ive evidence that the
required training t ime for the back-propagati on algorithm increases exponen­
t ially wit h the pred icate order of the computation being trained. This would
indicate that earlier ent husiat ic projections of the use of back-propagation to
learn arb itrarily complicated function s were overly optimistic. The learn ing
of such functions, while no longer impossible as wit h perceptron networks,
st ill remains effectively intractab le. Thus back-propagation, and probably all
known supervised learning algorithms for connectionist networ ks, should be
used only for learning of low-order computations. For high-order problems
such as connectedness and pari ty, alternative procedu res should be invest i­
ga ted .
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