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Abstract . We consider cellular automata on a square lattice wit h
nearest-neighbor inputs. OUf automa ta. are quenched mixtures of two
Boolean functi ons. We investigate if th ere is a phase tran sit ion as a
function of the degree of mixing, par ticularly if one chooses one rule
as forcing and t he other as non-forcing.

1. Int roduction

Th e Kauffman model [1,2,31 is a cellular automata [41 defined on a lat tice
where one associat es a binary variable Pi to each site which is either zero
or uni ty. Th e tim e evolution for each site is determined by a rule rando mly
picked among t he complete set of Boolean functions of J( inputs. In the
present work, the J( inpu ts are the near est neighbors on a square lat ti ce and
in one dimension.

This model presents under certain condit ions a phase transit ion between
a frozen phase and a chaotic one. In the frozen phase , a disturbance cannot
propagate, whereas in t he chaotic phase it does.

Derri da and Stauffer [5J have explored the Kauffman case, where they
used instead of K as varying parameter the probab ility p for a Boolean
funct ion to have the value 1 (most early studies were made for p = 0.5).
They treat the annealed case (in each iteration, the Boolean functions are
changed) and the quenched one (once t he Boolean functions are chosen for
t = 0 they are kept for all t imes). In both cases, a phase tra nsit ion was
found .

A Boolean funct ion is said forcing [1- 3] if at least one input site assumin g
a determined value, determines the output of the function, for example the
logical OR for the value 1 and AND for the value O.

We know that among the Boolean funct ions in the Kauffman model there
are forcing functions and non-forcing ones. Neighboring forcing functions
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tend to correlate the system favoring an ordered ph ase whereas non -forcing
st ructures ten d to sca tter 0'5 and 1'5, disorganizing th e sys tem. So th ere
exists com pe t it ion bet ween ru les in Kauffman's mod el.

A damage is defined [6] as the number of sites differing as a result of
the t ime-evolutio n of a single err or introduced in t he sys te m, if initially one
Pi is changed. Of cours e, damage (in th e sense of genetic mutat ion) p ropa­
gates easier in weakly correlated systems. It ha s been proposed [1- 3,7] that
com petit ion be tween forc ing and non-forcing functions is responsible for the
phase t ra nsition in cellular auto mat a like the Kauffman mod el. In this work ,
we want to investiga te this question in more detail.

We consider the quenched case and mix [7] only two rules Fl and F2 , for
exam ple one forcing and ano ther non-forcing. Specifically, we consider only
symmet ric rules, i.e., F( l, 2,3 1 ••• , k - 1, k) = F (l, k, k - 1, . . . , 3, 2) where 1
is the central site and 2, 3, . .. , k - 1, k are its neighbors. We take as varying
par ameter the probability p to have rule Fl on a given site and 1 - P to have
F2 .

2. Method

A way to characterize the chaotic phase is through the time-developmen t of
the normalized Hamming distance w(t) between two configurations (Pitt))
and {gj(t)} on which we apply simultaneously the same set of functions {Fi}.
Th e distance W(t ) is defined by

N

W(!) '" L:)Pi(t ) - ~i(t))2IN
;=1

where N is the number of sites of the lattice. Initi ally, Pi = ei except for one
rando mly select ed sit e.

Vlie t hus start with two configurat ions having fort = 0 a distance 1/N
between each other and calculate w= == limt_ = w(t). Since the frozen pha se
is insensitive to an initi al disturbance, we have in this case w= = 0 for the
limit W( t = 0) ----+ O. In the chaotic phase, the limit distance W= is different
from zero. So one can use the distance Wco as a disorder parameter.

We calcula te the distance '11 = if the initial disturbance tend s to zero
[5]. Since one works with finite systems, one has to perform thi s via an
extra polat ion. Following the lines of Stanley et. a]. [6] we take three different
init ial configurat ions, namely A, B, and C1 const ructed as follows.

Configuration A Th e origina l "undamaged" configuration.

Configuration B Differs from configurat ion A in one ra ndom ly chosen site.

Configuration C Differs from configura t ion B in another randomly chosen
site and from configuration A in these two sites.

Th en we extrapolate to zero initial damage by the equation
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We calculate Wc:o for various mixtu res of rules, using periodic boundary
condit ions, by numerical simulat ion using Mult i-Spin-Coding techn iques [8],
implemented on a Cray XMP and getting a speed of 7 * 10' updates of the
three confi gurati ons per second. For improvements in the method see [1 2).

The init ial configurat ions are constructed randomly having a certain con­
centrat ion q of l 's . In our data, we used q = 0.5 and verified in some cases
that th e resuJts are unaffected for ot her values of q except for q = 0 and
q = l.

In order to calculate Woo one must let the system evolve to an equilibrium.
"" emonitor wet ) as function of time t and see it saturating towards Woo aft er
a characte rist ic t ime TO which is of order TO = 500 - 10000 for the systems
that we considered. Thus, we iterated T t imes where T was chosen to be
several t imes TO.

Two averages must be performed: one over different initial configurations
and one over different dist ribut ions of rules. We perform bot h averages at
once by choosing for each sample as well a new set of rules as a new initial
configurati on; typically, we average over M = 20 - 500 samples.

Finally, in order to take the thermody namic limit, we simulate systems of
different linear sizes L. To opt imize vecto rizat ion, our sizes must be mult iples
of 64 and the smallest choice is L = 192; our largest L was 40000 in one and
768 in two dimensions.

3. R esults

We start t reating the one-dimensional problem. We choose as Boolean func­
t ions FI , the generalized OR (which is true (I ) if at least one of its J(

argument s is tru e) and as F 2 the generalized XOR (which is true if an odd
number of its arguments is true) . We study the cases I< = 3 (nearest neigh­
bors and cent ral site) and J( = 5 (nearest and next-nearest neighbors and
cent ral site) and verify that there is no phase tra nsit ion. In figur e l a, we
show the size-dependence of t he order par ameter \II00 as a functio n of p and
L. We see that for p = 0, Woo goes to zero as the size L goes to infinity.
This shows that the rule XOR, although being non-forcing, is frozen; i.e.,
'l'oo{p = 0) = 0 in the thermodynamic limit . Anot her interest ing point is the
fact tha t there exists a maximum in the curve of figure lao T he height of this
maximum goes to zero with increasing L. In summary, t his one-dimensional
system does not spread its damage over infinite distances and thus is not
chaot ic.

Similarly, we st udied the mixt ure of OR and XOR on the square lat t ice.
Again , pure XOR is frozen as is OR. For the mixture of OR and XOR,
however, for 0 < p < 0.4 there is a chaotic phase as seen in figure lb.
The points do not show a significant size dependence, but there are st rong
statist ical fl uctu at ions: for some init ial configurat ions Woo = 0 and for ot hers
Wm of O. Th is is wha t one would expect: if the two initially damaged [91
sites and their neighbors hap pen to be not susceptible to damage, the init ial
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Figure 1: (a) Disorder parameter Woo for a one-dimensional system
in which rules XOR and OR are mixed with J( = 5 as a function
of p for different sizes L and number of runs M , after T = 10000
time steps: L ~ 40000, M ~ 20 (full circles); L ~ SOOO, M ~ 100
(t riangles); L ~ 1600, M ~ 200 (squares); and L ~ 320, M ~ 500
(open circles) . (b) -W oo for a mixture of XOR and OR on a square
latt ice, as a function of p , T = 10000: L :; 192, M = 400 (circles) ,
L ~ 256, M ~ 200 (squa res), L ~ 384, M ~ 200 (t riangles) . Woo is
zero in the nonchaotl c phase and nonzero in the chaotic phase, for the
limit L -+ 00, T -+ 00 . Thus figures 1 through 3 show the transition
to chaos .
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damage can die out quickly. The average over many init ial configurations
however seems to yield a value of Woo ,....., 0.13.

Next , we perform a more systemat ic study of other rules on th e square
lattice. V\'e take as non-forcing rule the function Q2R [8,10], where a site
is damaged if and only if the two of its neighbors are tr ue (1) and the two
oth ers are false (0) and is given by

F2 = XOR[f(Pt, P"P3,P4),p(i,j)]

where p(i,j) is t he central site, PllP2,P3, P4 are its four neighbors, and

f =ORU. , fb)

Here, fa and f b are defined as follows:

and

f , = AND[XOR(p" PJ)' XOR(p" P4 ))

As presented in reference [6], the Q2R rule leads to cbaotic behavior , at least
for the range of parameters investigated there.

We analyze th e phase diagram dependin g on the probability p to choose
a given funct ion F 1, 1 - p being the probability for the funct ion F2 (here ,
Q2R) .

We present the resul ts for th e case

F I = OR[P" P" P3,P4, P(i,il ]

We can see in figure 2 that in th e thermodynamic limit for p > 0.02 one
certainly is in th e frozen phase. For p > 0.01, the value of Woo decreases for
increasing L and presumably one is in the frozen phase, too , for L ---t 00 .

For p < 0.01, the sit uat ion is less clear ; either t here is a chaotic phase with
a Woo ,....., 0.13 or there is an extremely slow critical size dependence and Woo
ultimately goes to zero in the thermodynamic limit . For p = 0, Woo equals
0.5. In conclusion, we cannot exclude a very small chaoti c phase close to
p = o.

We present below twelve other rules F1 combined with Q2R where we
have qual itatively verified similar resu lts as in figure 2: for nea rly all values
of p there is clearly a frozen phase and on ly very close to p = 0 there is a
region of slow converge nce in L and TO, which might be a crossover region.

F1 = OR[AND (pt ,p"P3,P4),p(i, j )]

F I = f

FI = OR[f,p(i , j )]

FI = XOR[f• .J"p(i,il]
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Figure 2: q,oo for a. mixture Q2R a.nd OR on a. square lattice, as a.
function of p, M = 200 and 10000 < T < 40000. L = 768 (full circles);
L = 384 (t riangles); L = 256 (squares); and L = 192 (open circles).
At p = 0 all points are at Woo = 1/ 2.

F1 = I,

F1 = XOR(J"p(i ,j)]

F 1 = ANDIJ. , NOT(j,»)

F l = I (identity)

F l = OR{XOR[pt. p" P3, p" p(i,j) ),OR[AND (pt. p,) , AND (P3, p,)J}

Fl = OR{XOR[pt. p" P3, p" p(i, j )], OR[AND[pt,p" p(i, j )),

AND[p3 , p" p(i,j )]J}

Fl = OR{XOR[pt. p" P3, p" p(i,j»), AND(OR(pt. p" PJ, p, ), p(i, j)J}

Fl = XOR{ANDIJ.. NOT(j,»), p(i,j)}

For all these functions, we verified the existence of the frozen phase ev­
erywhere except in a very close vicinity of p = o.

In cont rast to the former case , we now present anot her class of functions
P i combined with Q2R, where we have along the whole interval of p except
for p =1 the chaotic phase

F l = XOR[Pt.P',P3,p" p(i, j)]

F l = OR{XOR[pt.p"P3,P"p(i,j)),AND[pt.p"P3'P, ]}
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Figure 3: 'lJ00 for a mixture of Q2R and XOR on a square lat tice, as
a function of p, T = LOOOO and M = 10. L = 192 (circles) , L = 320
(squares), the tria.ngles give the expected limit for infinite system size.
Note the pa.tholog ical behavior of pure XOR: "ljl oo ; 0 for P = 1 for
all L .
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In figure 3, we show the results corresponding to the first of the se three
functions. We have I/!= (p < I) = 0.5 and I/!=(p = I) = 0 for L ..... 00, which
indicates the absence of th e t ransit ion at p < 1. Note the small widt h of the
crossover regIOn .

To test our program, we also rewrote it wit hout Mult i-Spin-Coding and
applied it to the mixture of rules st ud ied in reference [UI. We confirmed
the result there, and in addition found a phase transit ion near p = 0.45, if
we comhined I-XOR (proba bility p) with the complem ent of the other rule
of [111 (w it h and without Multi -Spin-Coding). Such transitions a re useful
candidates to st udy the fract a.l dimensions of da.mage spread ing [6,9]. More­
over , in t he case of a pure XOR or pu re l-XOR rule, we found a compl etely
regular an d determinist ic spread of dam age, with four fold sym metry, even
with a random initial distribution of spins. T his pathological beh avior may
explain some of th e difficulti es described above for the limits p -+ 0 or p -+ 1.

4 . C oncl us ions

We st udied the relevan ce th at forcing and non-for cing rules can have for the
appearance of a phase tr ansit ion.

\Ve mixed only two symmetric rules FI , F 2 chosen with probabilit ies p
an d I - p respectively instead of mixing all rules as in t he Kauffma n model.
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Usually, th e rule PI was a rule that leads th e system to a frozen phase
whereas F2 leads to a chaotic one.

vVe found th e following resul ts:

Not all non-forcing ru les lead to a chaotic phase as is the case for XOR
in the one-dimens ional or on the square lattice.

Th ere is a t ransition between a chaotic and nonehaot ic phase if XOR
is dilut ed with OR on t he square lat t ice; t his phase shows, however , a
st rong dependence on th e choice of the init ial configurat ion.

Mixing th e chaot ic rule Q2R with frozen rules one does not seem to
give a phase transiti on at an intermediate value of p bu t only at th e
ext remes p -+ 0 or p -+ 1. What exact ly happens in these extremes is
not easy to discern because of long relaxation t imes, hut in some cases
as the one of figure 2, as complete scena rio is suggested. The opposite
examples of[7 ] and [111 thus may be th e except ion rather than the rule.

We conclude that mixing only two rules is not enough to explain the phase
t ransition in Kau ffman's model or ot her inhomogeneous cellular au tomata
[61 . XOR is less stro ngly frozen th an OR. So XOR mixed with Q2R gives
a chaot ic phase for all p except p = I while OR mixed with Q2R gives a
frozen phase except very close to the pure Q2R limit . To obtain a phase
t ra nsit ion at an intermediat e value of p, all these different ru les, frozen to a
d ifferen t extent, must be mixed . In addi t ion, we only considered symmetric
rules. Asymmet ric rules might also be imp ort ant to understand th e phase
transit ion in the Kauffman model and elsewhere.

In summary, in contrast to the original hopes [1,2,7] and to recent resul ts
for the "linea r" Kauffman mod el [13], the transit ion to chaos is not reliably
described by forcing functions.

Acknowledgements

L.R.S. thanks the CAPES fellowship of Brazil and L.S.L. the FINEP / PADCT
and CNPq for support .

Refere nces

[I] S. A. Kauffman, J. Theor. Bioi., 22 (1969) 437.

[21 S. A. Kauffman, Pliyeice D, 10 (1984) 145.

[3] S. A. Kauffman, Disordered Systems and Biological Organiza tion , E. Bi­
enenstcck, Soulie F . Fogelman, and G. Weisbuch eds. (Spr inger-Verlag, Hei­
delberg, 1986) 339.

[4] "P roceedings of the Los Alamos Conference" , Physica D, 10 (1984) D.
Farmer , T . Toffoli, and S. Wolfram eds.

[5] B. Derrida and D. Stauffer, Europhysics Letters, 2 (1986) 739.



Simulat ions of Mix tures of Two Boolean CA Rules 37

[6] H. E. St anley, D. Stauffer, J. Kertesz, and H. J. Herrmann, P hy s. Rev. Le t t .,
59 (1987) 2326; see also references (1- 31 and N. A. Packard and Step hen
Wolfram, Jo urnal of Statis tical Phy sics, 38 (1985) 901.

[7] H. Hartman and G. Y. Vichniac , Disord ered Sy st em s and Biological Orgalli~
zation, E. Bienenstock, Soulie F. Fogelman, and G. Weisbuch eds. (Springer­
Verlag, Heidelberg, 1986) 53.

[8] H. J. Herrmann, JouflIal of Stat ist ical Phy sics, 45 (1986) 145.

[9J D. Stauffer , Ph il. Mag. B, 56 (1987) 901.

[10] G. Y. Vichniac, "P roceedings of the Los Alamos Conference", Phyeice D, D.
Farmer, T. Toffoli, and S. Wolfram eds. , 10 (1984) 96; Y. Pomea u, J. Ptv ys.
A, 17 (1984) L415.

Ill) D. Stauffer, J ourn al of Statistical Physics, 46 (1987) 789.

(12) L. R. da. Silva and H. J. Herrmann, Journal of Statistical Phy sics, in press.

[13J A. Hansen, to be published.




