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Abstract. We consider cellular automata on a square lattice with
nearest-neighbor inputs. Our automata are quenched mixtures of two
Boolean functions. We investigate if there is a phase transition as a
function of the degree of mixing, particularly if one chooses one rule
as forcing and the other as non-forcing.

1. Introduction

The Kauffman model [1,2,3] is a cellular automata [4] defined on a lattice
where one associates a binary variable p; to each site which is either zero
or unity. The time evolution for each site is determined by a rule randomly
picked among the complete set of Boolean functions of K inputs. In the
present work, the K inputs are the nearest neighbors on a square lattice and
in one dimension.

This model presents under certain conditions a phase transition between
a frozen phase and a chaotic one. In the frozen phase, a disturbance cannot
propagate, whereas in the chaotic phase it does.

Derrida and Stauffer [5] have explored the Kauffman case, where they
used instead of K as varying parameter the probability p for a Boolean
function to have the value 1 (most early studies were made for p = 0.5).
They treat the annealed case (in each iteration, the Boolean functions are
changed) and the quenched one (once the Boolean functions are chosen for
t = 0 they are kept for all times). In both cases, a phase transition was
found.

A Boolean function is said forcing [1-3] if at least one input site assuming
a determined value, determines the output of the function, for example the
logical OR for the value 1 and AND for the value 0.

We know that among the Boolean functions in the Kauffman model there
are forcing functions and non-forcing ones. Neighboring forcing functions

@© 1988 Complex Systems Publications, Inc.



30 L. R. da Silva, H. J. Herrmann, and L. S. Lucena

tend to correlate the system favoring an ordered phase whereas non-forcing
structures tend to scatter 0’s and 1’s, disorganizing the system. So there
exists competition between rules in Kauffman’s model.

A damage is defined [6] as the number of sites differing as a result of
the time-evolution of a single error introduced in the system, if initially one
pi is changed. Of course, damage (in the sense of genetic mutation) propa-
gates easier in weakly correlated systems. It has been proposed [1-3,7] that
competition between forcing and non-forcing functions is responsible for the
phase transition in cellular automata like the Kauffman model. In this work,
we want to investigate this question in more detail.

We consider the quenched case and mix [7] only two rules F'1 and F2, for
example one forcing and another non-forcing. Specifically, we consider only
symmetric rules, i.e., F/(1,2,3,...,k—=1,k) = F(L,k,k—1,...,3,2) where 1
is the central site and 2,3,...,k — 1, k are its neighbors. We take as varying
parameter the probability p to have rule F'1 on a given site and 1 — p to have
F2,

2. Method

A way to characterize the chaotic phase is through the time-development of
the normalized Hamming distance ¥(t) between two configurations {p;(¢)}
and {g;(¢)} on which we apply simultaneously the same set of functions {F.}.
The distance ¥(t) is defined by

N
U(t) =) (pilt) — ei(1))*/N
t=1
where N is the number of sites of the lattice. Initially, p; = p; except for one
randomly selected site.

We thus start with two configurations having for ¢t = 0 a distance 1/N
between each other and calculate W, = lim, ., (). Since the frozen phase
is insensitive to an initial disturbance, we have in this case ¥ = 0 for the
limit ¥(t = 0) — 0. In the chaotic phase, the limit distance ¥, is different
from zero. So one can use the distance ¥, as a disorder parameter.

We calculate the distance W, if the initial disturbance tends to zero
[6]. Since one works with finite systems, one has to perform this via an
extrapolation. Following the lines of Stanley et. al. [6] we take three different
initial configurations, namely A, B, and C, constructed as follows.

Configuration A The original “undamaged” configuration.
Configuration B Dilflers from configuration A in one randomly chosen site.

Configuration C Differs from configuration B in another randomly chosen
site and from configuration A in these two sites.

Then we extrapolate to zero initial damage by the equation
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Uoo = Voo (A, B) + Uoo(B, C) — U4, C).

We calculate ¥, for various mixtures of rules, using periodic boundary
conditions, by numerical simulation using Multi-Spin-Coding techniques [8],
implemented on a Cray XMP and getting a speed of 7 # 107 updates of the
three configurations per second. For improvements in the method see [12].

The initial configurations are constructed randomly having a certain con-
centration ¢ of 1’s. In our data, we used ¢ = 0.5 and verified in some cases
that the results are unaffected for other values of ¢ except for ¢ = 0 and
g =1

In order to calculate ¥, one must let the system evolve to an equilibrium.
We monitor ¥(t) as function of time ¢ and see it saturating towards ¥, after
a characteristic time 75 which is of order 75 = 500 — 10000 for the systems
that we considered. Thus, we iterated 7 times where 7 was chosen to be
several times 7g.

Two averages must be performed: one over different initial configurations
and one over different distributions of rules. We perform hoth averages at
once by choosing for each sample as well a new set of rules as a new initial
configuration; typically, we average over M = 20 — 500 samples.

Finally, in order to take the thermodynamic limit, we simulate systems of
different linear sizes L. To optimize vectorization, our sizes must be multiples
of 64 and the smallest choice is L = 192; our largest L was 40000 in one and
768 in two dimensions.

3. Results

We start treating the one-dimensional problem. We choose as Boolean func-
tions F1, the generalized OR (which is true (1) if at least one of its K
arguments is true) and as F'2 the generalized XOR (which is true if an odd
number of its arguments is true). We study the cases K = 3 (nearest neigh-
bors and central site) and K = 5 (nearest and next-nearest neighbors and
central site) and verify that there is no phase transition. In figure la, we
show the size-dependence of the order parameter ¥, as a function of p and
L. We see that for p = 0, ¥, goes to zero as the size L goes to infinity.
This shows that the rule XOR, although being non-forcing, is frozen; i.e.,
V.(p=0) =0 in the thermodynamic limit. Another interesting point is the
fact that there exists a maximum in the curve of figure 1a. The height of this
maximum goes to zero with increasing L. In summary, this one-dimensional
system does not spread its damage over infinite distances and thus is not
chaotic.

Similarly, we studied the mixture of OR and XOR on the square lattice.
Again, pure XOR is frozen as is OR. For the mixture of OR and XOR,
however, for 0 < p < 0.4 there is a chaotic phase as seen in figure 1b.
The points do not show a significant size dependence, but there are strong
statistical fluctuations: for some initial configurations ¥, = 0 and for others
¥, # 0. This is what one would expect: if the two initially damaged [9]
sites and their neighbors happen to be not susceptible to damage, the initial
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Figure 1: (a) Disorder parameter ¥, for a one-dimensional system
in which rules XOR and OR are mixed with K = 5 as a function
of p for different sizes I and number of runs M, after = = 10000
time steps: L = 40000, M = 20 (full circles); L = 8000, M = 100
(triangles); L = 1600, M = 200 (squares); and L = 320, M = 500
(open circles). (b) ¥, for a mixture of XOR and OR on a square
lattice, as a function of p, 7 = 10000: L = 192, M = 400 (circles),
L = 256, M = 200 (squares), L = 384, M = 200 (triangles). ¥, is
zero in the nonchaotic phase and nonzero in the chaotic phase, for the
limit L — oo, 7 — 00. Thus figures 1 through 3 show the transition
to chaos.
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damage can die out quickly. The average over many initial configurations
however seems to yield a value of ¥, ~ 0.13.

Next, we perform a more systematic study of other rules on the square
lattice. We take as non-forcing rule the function Q2R [8,10], where a site
is damaged if and only if the two of its neighbors are true (1) and the two
others are false (0) and is given by

F2 = XOR[f(p1, p2; p3, 1), (3, 7)]

where p(7,7) is the central site, py, pa, pa, pq are its four neighbors, and

f=0R(fa, fy).
Here, f, and f, are defined as follows:

Ja = AND[XOR(p1, p2), XOR(p3, p4)]
and

fs = AND[XOR(p1, p3), XOR(p2, p4)]

As presented in reference [6], the Q2R rule leads to chaotic behavior, at least
for the range of parameters investigated there.

We analyze the phase diagram depending on the probability p to choose
a given function F'1, 1 — p being the probability for the function F2 (here,
Q2R).

We present the results for the case

F1 = OR|[py, pa; ps; pa, p(2, 7)]

We can see in figure 2 that in the thermodynamic limit for p > 0.02 one
certainly is in the frozen phase. For p > 0.01, the value of ¥, decreases for
increasing L and presumably one is in the frozen phase, too, for L — co.
For p < 0.01, the situation is less clear; either there is a chaotic phase with
a W, ~ 0.13 or there is an extremely slow critical size dependence and W,
ultimately goes to zero in the thermodynamic limit. For p = 0, ¥, equals
0.5. In conclusion, we cannot exclude a very small chaotic phase close to
p=0.

We present below twelve other rules F'1 combined with Q2R where we
have qualitatively verified similar results as in figure 2: for nearly all values
of p there is clearly a frozen phase and only very close to p = 0 there is a
region of slow convergence in L and 7y, which might be a crossover region.

F1 = OR[AND(p1, p2, p3, pa), p(2, )]
Fl=of

F1 = OR[f, (2, 5)]

F1 = XOR([fa, fo, p(,7)]



34 L. R. da Silva, H. J. Herrmann, and L. S. Lucena

0.508A0 el

oA—

03— =t

oz

o
omo ™ .5 ® E "
01— " . o —
A o o
5 | T a1 4 1 #
0.01 0.02 0.03 0.04 0.05
Q2R P

Figure 2: ¥, for a mixture Q2R and OR on a square lattice, as a
function of p, M = 200 and 10000 < 7 < 40000. L = 768 (full circles);

L = 384 (triangles); L = 256 (squares); and L = 192 (open circles).
At p = 0 all points are at ¥, = 1/2.

Fl=f

F1 = XOR{fs, p(i, )]

F1 = AND[f,,NOT(f;)]

F1 =1 (identity)

F1 = OR{XOR[p1, p2, p3, p1, p(1, §)], OR[AND(p1, ps), AND(ps, ps )]}
F1 = OR{XOR|[p1, p2, p3, p4, (2, 7)], OR[AND[p1, p2, p(i, 1)},
AND|ps, pa, (3, 5)]]}

F1 = OR{XOR|[p, p2, p3, p4, p(i,7)], AND[OR(p1, p2, p3, p4), p(3, §)]}
F1 = XOR{AND(fs, NOT(£3)], p(3,5)}

For all these functions, we verified the existence of the frozen phase ev-
erywhere except in a very close vicinity of p = 0.

In contrast to the former case, we now present another class of functions
F'1 combined with Q2R, where we have along the whole interval of p except
for p =1 the chaotic phase

Fl= XOR[PIND'E! P3y P4,y p(l"!j)]
Fl = OR{XOR[PI,PZ,PS,P4,P(i:j)]1AND[p1:P2ap3vp4]}
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Figure 3: ¥, for a mixture of Q2R and XOR on a square lattice, as
a function of p, 7 = 10000 and M = 10. L = 192 (circles), L = 320
(squares), the triangles give the expected limit for infinite system size.
Note the pathological behavior of pure XOR: ¥, = 0 for p = 1 for
all L.

In figure 3, we show the results corresponding to the first of these three
functions. We have ¥, (p < 1) =0.5 and ¥ ,(p = 1) = 0 for L — oo, which
indicates the absence of the transition at p < 1. Note the small width of the
crossover region.

To test our program, we also rewrote it without Multi-Spin-Coding and
applied it to the mixture of rules studied in reference [11]. We confirmed
the result there, and in addition found a phase transition near p = 0.45, if
we combined 1-XOR (probability p) with the complement of the other rule
of [11] (with and without Multi-Spin-Coding). Such transitions are useful
candidates to study the fractal dimensions of damage spreading [6,9]. More-
over, in the case of a pure XOR or pure 1-XOR rule, we found a completely
regular and deterministic spread of damage, with fourfold symmetry, even
with a random initial distribution of spins. This pathological behavior may
explain some of the difficulties described above for the limits p — 0 or p — 1.

4. Conclusions

We studied the relevance that forcing and non-forcing rules can have for the
appearance of a phase transition.

We mixed only two symmetric rules F'1, F2 chosen with probabilities p
and 1 — p respectively instead of mixing all rules as in the Kauffman model.
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Usually, the rule F1 was a rule that leads the system to a frozen phase
whereas F'2 leads to a chaotic one.
We found the following results:

Not all non-forcing rules lead to a chaotic phase as is the case for XOR
in the one-dimensional or on the square lattice.

There is a transition between a chaotic and nonchaotic phase if XOR
is diluted with OR on the square lattice; this phase shows, however, a
strong dependence on the choice of the initial configuration.

Mixing the chaotic rule Q2R with frozen rules one does not seem to
give a phase transition at an intermediate value of p but only at the
extremes p — 0 or p — 1. What exactly happens in these extremes is
not easy to discern because of long relaxation times, but in some cases
as the one of figure 2, as complete scenario is suggested. The opposite
examples of [7] and [11] thus may be the exception rather than the rule.

We conclude that mixing only two rules is not enough to explain the phase
transition in Kauffman’s model or other inhomogeneous cellular automata
[6]. XOR is less strongly frozen than OR. So XOR mixed with Q2R gives
a chaotic phase for all p except p = 1 while OR mixed with Q2R gives a
frozen phase except very close to the pure Q2R limit. To obtain a phase
transition at an intermediate value of p, all these different rules, frozen to a
different extent, must be mixed. In addition, we only considered symmetric
rules. Asymmetric rules might also be important to understand the phase
transition in the Kauffman model and elsewhere.

In summary, in contrast to the original hopes [1,2,7] and to recent results
for the “linear” Kauffman model [13], the transition to chaos is not reliably
described by forcing functions.
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