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On o-Automata

Klaus Sutner
Stevens Institute of Technology, Castle Point,
Hoboken, NJ 07030, USA

Abstract. A o-automaton is a particularly simple type of cellular
automaton on a graph: each cell is either in state 0 or 1 and the
next state of a cell is determined by adding the states of its neighbors
modulo two. Using algebraic and graph-theoretic techniques, ques-
tions such as reversibility and existence of predecessor configurations
of these automata will be studied. We derive some general results
for product graphs. In particular, we give a simple characterization
of the number of predecessors of a configuration in rectangular grids,
cylinders, and tori.

1. Introduction and definitions

A cellular automaton in its most general form is a discrete dynamical system.
Its components, called cells, are interconnected in a fixed way and can assume
finitely many possible states. A configuration of the system is an assignment
of states to all cells. Every configuration determines a next configuration via
a transition rule that is local in the following sense: the state of a cell at time
t + 1 depends only on the states of its neighbors at time ¢. In this paper,
we will consider cellular automata with an extremely simple transition rule:
there are only two possible states 0 and 1, and the state of cell at time ¢ + 1
is defined to be the sum of the states of its neighbors at time ¢, calculated
modulo two. A cell may or may not be included in its own neighborhood. The
next configuration is determined by applying this rule simultaneously to all
cells. On the other hand, we will allow arbitrary adjacencies between the cells
of the automaton. Cellular automata of this type will be called g-automata.
A typical example of a g-automaton is a traditional one-dimensional cellular
automaton with rule 90 or rule 150 (see [3,8]): there are infinitely many cells
v;, t € Z, and the neighborhood of cell v; consists of v;—; and vy for rule
90, v;_1, v;, and v;y; for rule 150. The evolution of a configuration that has
exactly one cell in state 1 and all the others in state 0 leads to well-known
fractal patterns; see e.g. [8]. c-automata on trees were first considered by
Lindenmayer in [12] and occur also in [1,4].
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We do not wish to restrict ourselves to the simple neighborhood situations
of one-dimensional cellular automaton. Therefore, we will use graphs to
describe the underlying mesh of cells and their connections in a g-automaton.
We begin with a somewhat less informal definition. Our graph theoretic
terminology follows Berge (see [2]). For our purposes, a graph is best defined
as a pair G = (V, E) where E C V x V. These structures allow for self loops
and are sometimes referred to as pseudo graphs; they correspond to 1-graphs
in [2]. Furthermore, we will insist that G is locally finite, i.e. every vertex
in (G is adjacent to only finite many vertices. It is convenient to identify E
with the adjacency matrix of G construed as a matrix in [y .y Fo. Here
Fy = {0,1} is the two-element field and there is a 1 in the u*® row and o'
column of F iff there is a directed edge from vertex u to vertex v in G.

A vertex u is a predecessor of v iff there exists an edge (u,v) in G. The
collection of all predecessors of v will be denoted by

T'g(v) := {u € V|(u,v) € E}.

Note that T'g(v) may or may not include v depending on whether v has a
self loop in G or not. We will refer to I'g(v) as the neighborhood of v in G.
A configuration of G is a function

X:V = F.

The collection of all configurations of G will be denoted by Cg. Define the
transition rule o : C¢ — Cg by
o(X)(v):= DY X(u)
u€l(v)

A = (G,0g) is called the o-automaton on GG. A o-automaton A = (G,o¢)
is symmetric iff the adjacency matrix F of G is symmetric, thus symmetric
g-automata arise from undirected graphs. Let G be an undirected graph
without self loops and D a subset of V. Define G(D) to be the graph obtained
from G by adding self loops at all vertices in D. c¢-automata of the form
(G,o6v)) or (G, 05(4)) are called Lindenmayer automata on G.

To lighten notation we will usually omit the subscript G and write I'(v),
o, (G,0) and so forth. Also we will write o* for og(vy and o~ for og(g). We
frequently identify singletons {v} with v, v € V. Thus, X := u + v defines
the configuration {u,v} if u # v and the empty set otherwise. We will write
0 for the empty set and 1 for V' as members of Cg, so 0(v) = 0 and 1(v) =1
for all v in V. Let us agree on some notation for graphs: P, (C,,) will denote
the undirected path graph (cycle) on m points. Their vertex sets are assumed
to be {1,2,...,m}. Lastly, for an integer n let [n] := {1,2,...,n}.

Configurations are conveniently identified with subsets of V, i.e. X is
identified with {v € V|X(v) = 1}. Observe that algebraically Cg is a vector
space over F, Cg = []y Fy; addition here amounts to taking symmetric
differences. We will call this space the configuration space. Furthermore, o
is a linear map from the configuration space to itself (such rules are called
additive in [3]). If one thinks of configuration X as a column vector over F3,
it is obvious from the definitions that
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o(X)=ET-X

where ET is the transpose of the adjacency matrix of G. The arithmetic
is understood to be over the field F,. Also note that o is an example of a
uniform rule: o is defined for all graphs regardless of the particular types of
neighborhoods that occur. Other rules of this type are studied in [5].

From the point of view of dynamical systems, one of the basic questions
about a o-automaton A = (G,o) is whether rule o is reversible on G: can
configuration X be reconstructed from ¢(X) or, in other words, is the map
o : Cec — Cg injective. As o is linear, this is equivalent to the question
whether o has trivial kernel. In terms of the transition diagram, reversibility
is equivalent with every node having in-degree at most 1. Note that rule o is
locally irreversible in the sense that different configurations can lead to the
same state in one particular cell in the next generation. However, globally
this rule may well be reversible. A general characterization of those graphs
G for which og is injective seems rather difficult. Some steps in this direction
for Lindenmayer automata were taken in [1] and [4]. In this paper, we will
focus on product graphs like grids P, x P,, cylinders C,, x P,, and tori
Cwm % Cy (see section 4 for definitions). For all these graphs, reversibility
with respect to rule o~ depends on simple number theoretic properties of m
and n. For example, we will show that a m x n grid is reversible iff m + 1
and n + 1 are relatively prime. A configuration X is a predecessor of Y iff
o(X) =Y. We will show that the number of predecessors of a configuration
in am X n grid is (either 0 or)

2gcd(m+1,n+l)-—1

Hence, the number of predecessors depends not so much on the size of the
grid but rather on number-theoretic properties of m and n. Note that one
can determine the reversibility of a m x n grid in O((log, mn)*) steps using
the Euclidean algorithm. By comparison, the brute force approach based on
computing the determinant of the adjacency matrix of the graph is polyno-
mial in n and m. Similarly, a m x n cylinder is reversible iff m and n + 1
are relatively prime and either both m and n + 1 are odd or the exponent of
2 in the prime decomposition of m is strictly larger than the exponent of 2
in the prime decomposition of » 4+ 1. Our proof hinges on the fact that rule
o~ displays simple perfodicity properties on all these graphs. Unfortunately,
the behavior of rule o is much more complicated; no analogous analysis for
rule o is available at this point.

Another basic problem is to determine which configurations have prede-
cessors under rule o. A g-automaton is complete iff every configuration has
a predecessor. In terms of the transition diagram, this means that every
configuration has indegree at least 1. Note that by the linearity of o prede-
cessor existence in a finite o-automaton is closely related to reversibility of
the automaton: rule o is reversible on G (i.e., rule o is injective) iff (G, o) is
complete (i.e., rule og is surjective). More generally, one would like to char-
acterize configurations which have predecessors in the #** generation. For
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Lindenmayer automata, the configurations with predecessors can be charac-
terized in terms of the kernel of o¢. For certain simple graphs, this allows to
determine the configurations that possess predecessors completely.

The remainder of this paper is organized as follows. In section 2, we
will exploit the linearity of rule ¢ to establish some general results about
the transition diagram of a o-automaton. We briefly indicate how to lift
results from finite to infinite o-automata. In section 3, the focus is on finite
Lindenmayer automata on product graphs, typically grids and cylinders. We
introduce a family of linear operators that allow to determine the reversibility
of general product graphs. In particular for grids, cylinders, and tori with
rule = a complete analysis is given. We provide some numerical data that
point towards the difficulties of a similar approach for rule .

2. The transition diagram of a Lindenmayer automaton

The action of rule o on the configuration space Cg is best expressed graph-
ically by means of the transition diagram Cg of G. Formally, the transition
diagram is a directed graph that has as points the configurations in G’ and
an arc from X to Y iff X is a predecessor of Y, ¢(X) = Y. As o is linear,
the transition diagram is highly uniform. For example, suppose configura-
tion X has predecessor Y. Then the collection of all predecessors of X is the
affine subspace 0=!(X) = Y + ker(c); thus the indegree of any configuration
X in Cg is either 0 or 2, d := dim(ker(c)). The out-degree is of course 1,
so the connected components of Cg are all unicyclic (i.e., they contain at
most one cycle). Tracing a path in Cg shows the evolution of one particular
configuration. Clearly, automaton A = (G,a) is reversible iff the connected
components of Cg are cycles or infinite paths. For the special case where
G = Cy is a cycle on N points C; was studied extensively in [3].

Define the set of all ¢ generation predecessors of X by ¢~*(X) :=
{¥]|e'(Y) = X}. Thus, c74(X) is the collection of all vertices in Cg that
have a path of length ¢ to X. Note that ¢™*(X) is an affine subspace of
Cg; in particular, if X has a t'" generation predecessor ¥ then o~(X) =Y
+ker(a'). Define the co-orbit of X to be the collection of all predecessors
of X, co-orb(X) := Upo o4 X). Similarly, the orbit of X is defined as
orb(X) := {e*(X)|t > 0}. A configuration X is persistent iff for all ¢ > 0,
o~Y(X) # ¢, and semi-persistent iff there exists a persistent configuration
Y in the orbit of X. Thus, a persistent configuration must lie on a co-
infinite path in Cg or on a cycle. Fix such a path or cycle, i.e., a sequence
(X! :t > 0) of configurations such that o(X~*"') = X~* for all ¢ > 0 and
X°® = X. Furthermore, let us agree that whenever X lies on a cycle in Cg,
the configurations X~ are also chosen on that cycle. (It may happen that X
lies on a co-infinite path and on a cycle.) Note that in a finite configuration
space, every configuration is semi-persistent and all persistent configurations
lie on cycles.

For all semi-persistent configurations ¥ define the height of ¥ by

h(Y) := min(f > 0]¢*(Y) is persistent).
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Also, let 2(G) := max(h(Y)|Y in Cg semi-persistent) and define for persis-
tent configuration X

T(X) := {Y € co-orb(X)|c*"¥(Y) = X}.

Note that T(X) is a tree with root X; the subtress generated by the 2¢ — 1
sons of X are full 2%-ary trees (every node has either 2¢ sons or none at all).
A connected component of C; thus consists of a cycle and trees anchored on
that cycle.

The following is a generalization of lemma 3.3 in [3].

Lemma 2.1. Let A = (G,0) be a g-automaton. For any two persistent
configurations X and Y, the trees T(X) and T(Y') in the transition diagram
Cg are isomorphic.

Proof. For all configurations Z in T(X), define
FlZ) = Z 4 X ME 4 y-N3),

Observe that f(a(Z)) = a(f(Z)) for Z, o(Z) € T(X). Also, o"?)(f(Z))
=agM(Z) + MO X-M2)) Loh ) Y-HEN =X + X +Y =Y.
Thus, f(Z) is in the co-orbit of Y and s := h(f(Z)) < h(Z) := 1. Suppose

for the sake of a contradiction that s < {. Then for some r > 0
YT =a*(f(Z) =" (Z2)+ X'+ YL

But then ¢*=*(Y~") = ¢*(Z) + X +Y =Y. This implies that either t —s = r
or Y lies on a cycle and t — s divides r. In either case, ¥~" = Y** which
finally yields ¢*(Z) = X*~'. Thus, h(Z) < s and we have a contradiction.
Furthermore, we have f(Z) € T(Y').

Now let f' be defined as f but with domain T'(Y') and range a subset of
T(X). As h(f(Z)) = h(Z) and h(f'(Z)) = h(Z), we have f(f'(Z)) = Z and
f'(f(Z)) = Z. Thus, f and [’ are both bijections and we are through. B

The last lemma clearly holds in any vector space over F; with some linear
operator . To address the specific properties of Cg one can frequently use
the automorphisms of the underlying graph G. Suppose F' : V — V is
an automorphism of G. F' acts naturally on the configuration space Cg
by setting F(X) := T,ex F(z) for z in Cg. Observe that F' commutes
with e : F(o(X)) = o(F(X)) for any configuration X. The automorphisms
of GG are said to act transitively on a subset Cy of Cg ff VXY € Cy 3 F
automorphism (F(X) = Y). For example, let G be the cycle on N points
and Cp := {v|lv € V}. A cyclic shift is an automorphism of G, thus the
automorphism group of G acts transitively on Cy. An automorphism F of
is called an involution iff F o FF = id. The importance of involutions comes
from the following simple observation.

Proposition 2.2. Let F' be an involution of G. If the kernel of & on G is
non-trivial, then there exists a non-trivial configuration X in the kernel of o
such that X is invariant under F.
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Proof. Suppose X # 0 is in the kernel of o. If X is invariant under F' we
are done, so suppose X # F(X). Let Y := X + F(X) # 0. Then o(Y) =
a(X) +o(F(X)) = 0 +F(o(X)) = 0 and F(Y) = F(X) +F*X) = F(X)
+X =Y, as desired. I

Lemma 2.3. Let A = (G,o0) be a o-automaton. Suppose the automor-
phisms of G act transitively on a basis of the kernel of o. Then T(0), the
co-orbit of 0, is a tree consisting of 2% — 1 subtrees which have as roots the
non-trivial predecessors of 0. All these subtrees are complete 2°-ary trees of
the same depth.

Proof. It follows from our transivity assumption that the subtrees rooted
at X; are all isomorphic. Let us write #, := |¢7"(0)], » > 1. Note that
#. < (22 = 1)24-Y by counting. Thus, it suffices to show that equality
holds. This is trivial for » = 1. Proceeding by induction, we may assume
equality holds for all ' < r.

Now suppose o"(Z) = X; € Kg. Then, ¢77(X;) is the affine space
Z +07"(0). Hence #, = (2= 1) - (1+ Ty, i) = (24— 1) (1 + Torey
(24 —1) 24"-1) = (24 — 1) 241 are we are done. N

A typical example for a o-automaton satisfying the hypothesis of the last
lemma is again the cycle on N points Cy. The kernel of ot on Cy for N =0
(mod3) is generated by X; = 1+2+4+5+ ...+ (N —-2) +(N —1) and
X2:=2434+54+6+...4 (N —1)+N. Let S be the cyclic shift operator
on Cn. Then 5(X;) = X, and S?(X;) = X;. Also note that the hypothesis
is trivially satisfied whenever the dimension of the kernel is 1.

Example 1

Consider the graph G = (N, E) where E := {(v,v + 1)|v > 0}. Rule ¢ here
amounts to a left-shift. Clearly, every configuration is persistent. Also note
that the kernel of o has basis {0}; thus the hypothesis of the last proposition
is trivially satisfied. It follows that T(X)—{X} is an infinite complete binary
tree for all configurations X. Furthermore, there are exactly two cycles of
length 1 in Cg: they are generated by the two fixed points of & on G, namely
N and ¢. T(¢) is the class of all finite subsets of N, and T'(N) is the class
of all cofinite subsets of N.

We now turn to symmetric automata. One can define an “inner product”
on Cg by setting (X,Y) := |X N¥| mod2. Let X and Y be two configura-
tions; X is called perpendicular to Y iff (X,Y) = 0. The following theorem
characterizes configurations that have t® generation predecessors for finite
symmetric g-automata; a proof can be found in [4].

Theorem 2.4. Let A = (G,o) be a finite symmetric o-automaton, t > 0.
Then a configuration X occurs in the t** generation, i.e., X = o4(Y) for
some configuration Y, iff X is perpendicular to the kernel of o*.

Corollary 2.5. Let A= (G, o) be a finite symmetric o-automaton. Then a
configuration X is persistent iff X is perpendicular to the co-orbit of 0.
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Example 2

Consider the Lindenmayer automaton on Py, the path on N points, with rule
ot. for N # 2 (mod 3) the kernel of ot on Py is trivial; see lemma 4.3 of [4].
For N = 2 (mod3) the kernel of o* is generated by X1 = Y .20 (moas) -
Thus for these N exactly the configurations of the form Z = Zy U Z; with
Zy C Xy, |%,| even, and Zy C 3+6+...4 (N —2) arbitrary have a predecessor
under rule ¢t. Thus, exactly half the configurations have a predecessor
in (Py,o"). X is perpendicular to itself and therefore has a predecessor.
In fact, the predecessors of X; are Xy = 1 4+5+ T+ 11+ ... 4 (V —=1)
and X, =24 44+8+...4+N. As |X;| =2n+1is odd, 1 = 2,3, we
have (X;, X;) = 1 and neither X, nor X3 has a predecessor. Thus T'(0) =
co-orb(0) = {0, X3, X3, X3} has the form

0
1424445+, +#(N=-1)+N
1+5+T+1 1+.+(N=-1) 2+4+8+..+N.

Any persistent configuration Y therefore must have the following form:
Y =Y1UY,UY; where Y, C {z € [N]|la =0 (mod 3)} is arbitrary and both
Y, € X, and Y3 € X; have even cardinality. Hence there are 25" persistent
configurations (this also follows from lemmata 2.3 and 2.4).

Similarly, the kernel of ot over Cy is trivial unless N =0 (mod 3), in
which case it has dimension two and is generated by Y1 = 1+ 244+ 5 +
oo (N=2)+(N—1)and Y2 = 243+54+6+... 4+ (N —1)+ N; see lemma
4.3 of [4].

Simulations

It is frequently possible to simulate one cellular automaton on another. The
evolution of a configuration on the first automaton can thus be studied on
the second automaton. As an example, consider Py and Py, the paths on
points {1,...,N} and {1,...,2N + 1} respectively. Define a map f(X) :=
X + Yrex (2N 42 —2). It is easy to see that f(p(X)) = p(f(X)) where
p € {o7,0%}. Hence {Pyny1,p) simulate (Py,p). To make this precise, let
us say that the o-automaton on H simulates the g-automaton on G iff there
is a injective linear map f: Cg — Cp such that for all X in Cg:
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floe(X)) = ou(f(X)).

The map f will be called a simulation of G on H.
Our next lemma shows that on arbitrary graphs Lindenmayer automata
are no less general than g-automata.

Lemma 2.6. Every o-automaton can be simulated by a symmetric automa-
ton with rule ot as well as with rule o~.

Proof. Let G = (V,E) be a graph. For the sake of simplicity, we will
only show the simulation for ¢*; the argument for o~ is entirely similar. To
simulate the o-automaton on G we split every vertex of G in two: H has
vertices V x [2]. We will write v; for (v,7) € V x [2]. For every directed
edge (u,v) € E, u # v, introduce undirected edges {uy,v;}, 7 = 1,2, in H.
Furthermore, introduce an edge {v;,v,} whenever v has no self loop. Define
an injective linear map f : Cg — Cy by f(v) i=v; + vy forallv e V.
Claim f o og = oj; o f. By definition,

Th(v) = {wlu € Tg(v),u # v} U {w, ualv € Te(u) HU{va}]
and
Tu(va) = {wi|u € Tg(v),u # v}U{n}].

The last term {v;} is added iff v has no self loop. But f(X) contains
{v1,v2} iff X contains v. Thus for all configurations X in Cg f(og(X))(v:)
= oy(f(X))(v) and we are done. B

Example 3
We will show that h(Py,o") and h(Cy, ") have the following form:

"(“’N"’*)"‘*{gwﬂ}ﬂ yoa 2223 g% (2.1)
HOwr*) ={ Jow NLg e 5) (22)

Equation (2.2) is stated in [8]. In [3], quotient rings of polynomials are
used to derive such results for rules &~ and ¢% on cycles. The reference also
provides a detailed analysis of the length of the cycles in C¢,,. We will show
how to derive (2.1) and (2.2) in our framework.

We begin with (2.2). Let N = 3-2%.m where k > 0 and m > 1 is odd.
Thus k = 03(N). Define a configuration

Yi= Y (3-2%.i42%) + (3.2 i4241).

0<i<m
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By a result in [7] (¢1)¥(Y) = 0; in fact, we must have d(Y) = 2*. Also
note that Y fails to be perpendicular to ¥;: exactly one of 3+ 2% .4 4 2% and
3.2%.4 4251 is congruent 1 modulo 3, hence Y NY; has odd cardinality and
(Y,Y;) = 1. By theorem 2.4, ¥ has no predecessor; thus, Y is a leaf of 7°(0).
By lemma 2.3 and the remark following it T(0) is a balanced tree of height
h(Cn,o*). Hence 2% = h(Y) = h(Cy, o) and we are done.

To establish (2.1) we use a simulation of Py by Cz.42. The appropriate
map in this case is

J(X):=X+ Y (2N +2-2z).
zeX

Using the symmetry properties of ¥, it is easy to verify that f is indeed a
simulation. We may safely assume that N = 24+ 3-2* - n where k > 0 and
n > 1is odd. Note that the configuration 1 on Py is not perpendicular to X,
thus 1 fails to have a predecessor and must be a leaf in the transition diagram
Cp, By lemma 2.4 and proposition 2.5 we have h(Py,0") = h(1; Py). But
f(1) = 14+ (2N +1) and clearly A(1 4+ (2N +1); Cong2) = h(1 + 3; Canya).
As configuration 143 is not perpendicular to Yy, it must be a leaf in Cg, -
As before, we can argue that A(1 + 3; Conga) = h(Conge). Now h(Conya)
= 202(2N42) — 9oa(N+1)+1 hyy (9 9); thus (2.1) follows are we are done.

Infinite Automata

Let us briefly consider automata A = (G, o) where the underlying graph
G is infinite. Recall that G is always assumed to be locally finite. The
behavior of the automaton A is completely determined by the connected
components of the underlying graph G: for a connected component I of &
and any configuration X we have og(X) N H = oy(X N H). The connected
components of a locally finite graph are all countable, so we may safely
assume that G is countably infinite. Cg can be construed as a topological
space: endow F; = {0,1} with the discrete topology and Cg = [Iy F» with
the corresponding product topology. As V' is countable, the resulting space
is homeomorphic to the Cantor space 2*. 2¥ is well known to be a compact
Hausdorff space. For any convergent sequence Y; : ¢ < w) in Cg we write
lim; e Y; for the limit with respect to this topology. Rule og is certainly
continuous in this topology. The next lemma allows us to lift results {from
finite to infinite graphs.

Lemma 2.7. Extension lemma. Let (Y;: i < w) be a sequence of con-
figurations in G such that ¥ = lim;_.. Y;. Suppose for all i > 0 there
exists a configuration X; such that Y; := o(X;). Then there is a subsequence
(Xi, : J <w) such that X := lim;_., Xj; exists and o(X) =Y.

Proof. Cg is a compact Hausdorff space; hence the infinite sequence (X :
¢ < w) must possess a limit point X and a subsequence X; ::i < w) that con-
verges to X. But then by the of o¢ : (X)) = o(lim;_, X;,) = lim;_,, (X))
=lim;_ Y, =Y. 1
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Note that the only property of ¢ used in the last proof is its continuity.
Hence the extension lemma holds for arbitrary cellular automata rather than
just o-automata.

The typical application of the extension lemma is as follows. Suppose
G = (V, E) is the limit of an ascending chain of finite subgraphs G;, 1 > 0.
To be more explicit, suppose G; = (V;, E;) where V; C V;i; C V is finite,
E; C Eiya CFEand V = iso Vi, E = Uio Ei. If the g-automata (G;,o)
are all reversible, then the (G, o) is complete. For let ¥ be an arbitrary
configuration on G and let X; be the predecessor of Y/ := Y U V; in G;. Set
Y; = o6(X;). As G is locally finite, we must have lim;_,., ¥: = Y. Hence by
the extension lemma there is some configuration X such that og(X) =Y.
On the other hand, suppose there is a non-trivial predecessor X; of 0 in G for
all + > 0 such that lim;_.o, |X;| = co. Letting Y; := og(X;) one has lim;_,
Y; = 0. Hence by the extension lemma there is a subsequence (X, : i < w)
that converges to some configuration X such that o5(X) =0. As lim;_,., | X;]
= oo X is non-trivial; hence G is irreversible.

Accordingly by (2.1) and an analogous result for rule o=, both Linden-
mayer automata on the bi-infinite path P, are complete and irreversible.
The kernel of ¢+ has dimension two and is generated by the configurations

Xo:=) 3i+(3i—1)and X;:=) (3i+ 1)+ (3i —1).
i€Z i€Z
The kernel of o~ also has dimension two and is generated by the configura-
tions

Xo:=) 2 and X; = (2i +1).
i€Z i€Z

We note in passing that Lindenmayer automata on finite graphs with rule
ot have the property that the all-ones configuration 1 always has a prede-
cessor (this follows easily from corollary 2.5). A basis for the affine subspace
(¢t)7(1) can be computed in polynomial time by solving the system of
equations (ET +I)- X = 1. However, it is NP-hard to find the solution of
minimal cardinality. For a proof, see [4,5]. By the extension lemma configu-
ration 1 has a predecessor in all Lindenmayer automata with rule o*, finite
or infinite.

3. Lindenmayer automata on product graphs

In this last section, we will study the reversibility of o-automata on finite
product graphs such as grids and cylinders. We will focus on Lindenmayer au-
tomata, though some of the results hold for o-automata in general. Through-
out this section assume that G = (V, E) is a finite graph and define

d(G) := dim(ker(og)) = log,(| ker(ag)|)-

Thus d(G) is the co-rank of o as a linear map from the configurations space
to itself. d(G) measures the degree of reversibility of A = (G, a): the o-
automaton on G is reversible iff d(G) = 0. As G is finite, this is equivalent



On o-Automata 11

with o¢ begin surjective, i.e. every configuration has a predecessor iff every
configuration has at most one predecessor iff d(G) = 0. It is straightforward
to compute d(G) from the adjacency matrix of G. However, no structural
properties of the underlying graphs are known that characterize d(G). Even
for Lindenmayer automata on regular graphs, no concise description of d(G)
is available. The somewhat easier question of whether a graph G is reversible
under rule ¢ also turns out to be difficult to answer. Decision procedures
that determine reversibility for trees (connected acyclic undirected graphs)
are given in [1] and [4]. The second reference contains a list of reduction
procedures on undirected graphs (deletions of edges and/or vertices) that
preserve reversibility. A simple example of such a procedure is the deletion
of double end points. Suppose u; and u; are two end points (i.e. vertices of
degree 1), both adjacent to vertex v. Then the graph G’ obtained from G by
deleting u; and u, is reversible iff G is reversible.

For certain simple graphs we will be able to determine the co-rank of o
explicitly. For example, rule ¢~ on a m x m square grid has co-rank m,
d(Pmm,o”) = m. Unfortunately, the situation for rule o+ is much more
complicated. Table 1 lists d(P, n,0%) for m < 100. Figure 1 shows the
irreversible rectangular m x n grids and cylinders for 1 < n, m < 40 and rule
at.

We will focus on graphs with strong symmetry properties such as grids,
cylinders, and tori. The main tools in studying the reversibility of these
graphs are symmetries and simulations as defined previously. Note that if
the o-automaton on (3, is irreversible and can be simulated on G5, then G5 is
also irreversible. In fact, d(G;) > d(G;) (recall that a simulation is required
to be injective).

We begin with a general definition of product graphs suitable for our
purposes. Let G = (V, E) be an arbitrary graph and n > 1 a number. Define
the acyclic product graph G x [n] as follows: G x [n] has vertex set V' x [n]
and edges

By i= {((w,), (v, )i = 5 A (u,0) € E)V (w = v A i — j| = 1)}.

Similarly, the cyclic product graph G x (n) has vertex set V' x [n] and edge
set,

B, = {((wi), (0,0 = 3 A (u,v) € E)
V(w=vA(fi-jl =1V {i,5} = {1,n})}.

The most important examples are rectangular grids Py, , = P, X [n], cylinders
Cma = Cm X [n], and tori Tn = Cn X (n). Note that cylinder C,, is
isomorphic to P, x (m). We will denote the infinite two-dimensional grid by
P2 (P2 has vertices Z x Z and there is an edge {(z,y), (z',y)} iff |z —2'| +
ly—y'| = 1).

Here are some notational conventions. We will write v* instead of (v,1) €
V x [n]. For a configuration X in a product graph, let X := X NV x {i}
be the “i*® row” of X, i € [n].
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Figure 1: Irreversible grids Py, X P, (top) and cylinders Cp, x P,
(bottom) under rule ¢*. A box in position m,n indicates that P, x
P, (respectively C,, X P,) is irreversible. m = 1,...,40 — n =

1,...,40 |.
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m d(Pm.m:0+) m d(Pm,m70'+)
4 4 53 2
5 2 54 4
9 8 59 22

11 6 61 40

14 4 62 24

16 8 64 28

17 2 65 42

19 16 67 32

23 14 69 8

24 4 71 14

29 10 T4 4

30 20 7 2

32 20 79 64

33 16 83 6

34 4 84 12

35 6 89 10

39 32 92 20

41 2 94 4

44 4 95 62

47 30 98 20

49 8 99 16

50 8

Table 1: Irreversible Lindenmayer automata on square grids
Ppy oy m < 100.

Proposition 3.1. Theg-automaton on G x [n] can be simulated by G [2n+
1]. Hence d(G % [n]) < d(G % [2n +1]) and the o-automaton on G X [2n + 1]
is reversible only if the o-automaton on G X [n] is reversible. If, in addition,
G is reversible, then G x [2n + 1] is reversible iff G x [n] is reversible.

Proof. The map f : Cox[n] = Caxf2ns1) defined by

0 i=n+1

X(z:j) j=iorj=i—-n-—1,j€[n]. (3.1)

e = {
is a simulation. This follows easily from the symmetry properties of o. Hence
ker(gaxznt)) 2 f(ker(oaxp)) and the first claim follows. If the kernel of &
on G x [n] is non-trivial, pick a configuration X # 0 in the kernel. Defline
a configuration ¥ in Cy by Y = (X,..., X" 0,X", ..., X"). Similarly,
og(Y)(v') = op(Y)(v*"+*) = agp(X)(v') =0 for all v in V, i € [n]. Hence
og(Y) =0 and Y # 0 as required.

On the other hand, suppose the kernel of & on G x [2n + 1] is non-trivial
and G is reversible. By proposition 3.1 there is a configuration ¥ # 0 in
the kernel of ogyjant1) such that Fy(Y) = Y. Note that for all v in V
Y(@") = Y(v™*?). As Taxasn(v™') = Ta(v) x {n + 1} U{v",v"*?} this
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implies oy [an41)(Y)(v"1") = 0. Hence 7(¥Y™*!) = 0 and Y™+ = 0. Set X :=
YNV x[n]. Then X # 0is in the kernel of ogx[,); hence G x [n] is irreversible
and we are done. il

1t follows from proposition 3.1 by induction on k that every (2¥—1)x (2% —
1) square grid is reversible under rule o*: G is here the path on 2¥ —1 points
and therefore reversible (as 2 —1 #2 (mod 3)). In fact, any r-dimensional
hypercube of the form

(2R —1)x (2% -1) x...x (2% -1)

is reversible under rule o*. As we will see below there are d-dimensional
grids of arbitrary size that fail to be reversible under rule ¢+ and have pre-
decessors of 0 of arbitrary size. Hence by the extension lemma, the infinite
d-dimensional grid is both complete and irreversible (the dimension of the
kernel is 2°). The same holds for rule o~.

Simulations as in the last proof can be used frequently to obtain lower
bounds on the co-rank of ¢ on product graphs. For example, suppose that
p+1 divides m+1 and ¢+ 1 divides n + 1. Then P, can also be simulated
by P, . To see this, first note that the m x n rectangle can be covered with
p % g rectangles in such a way that the smaller rectangles are separated by
gaps of width 1 as shown below.

Now define a map f: Cp,, — Cp,,, by:
f((z,9)) = {(zi +1-(p+ 1),y +5 - (p+1))[0 S i <mo,0 < j < no}
where mg := (m +1)/(p+1), no:=(m+1)/(¢+1) and

_Ja 1 even
Ti=) p—z+1 iodd
and similarly for y;. Thus, f places one copy of configuration X—possibly
after a horizontal or vertical reflection-into each of the p x ¢ rectangles. It
is straightforward to show that f is indeed a simulation. Hence d(F,,) <
d(Ppn)-
Similarly the torus T,, can be simulated by the torus T,, whenever
p divides m and ¢ divides n, and the cylinder C,, can be simulated by the
cylinder C,, ,, whenever p divides m and g+1 divides n+1. Any grid, cylinder,
and torus can be simulated by the infinite square grid PZ. Furthermore, the
subspace of all configurations on P2 invariant under a right shift by m and
an up shift by n units has a simulation in the torus T}, .
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Extending configurations

Geometric arguments as above do not allow to determine the co-rank of o.
In the following, we will outline an algebraic approach that provides some
more information about the dimension of the kernel of linear rules on product
graphs. To describe the co-rank of o), first note that a configuration X
in the kernel of an[n% is completely determined by its first row X' : X?
= 7(X"), X* = 7(X?*) +X' and so forth. On the other hand, suppose
Xo is an arbitrary configuration on G. Inductively define a sequence of
configurations on G by

X] = 'T'(Xu)
Xiyo := 1(Xip1) + X

X, is a linear function of X for all n > 0. To make this more obvious,
inductively define a sequence of polynomials 7,, n > 0, in the polynomial
ring Fy[r].

7w == 1d
Ty i=T
Tipo I= T O Mgy + ;. (32)

Thus e.g. 725 = 7! + 7%+ 717 4 72 4+ 1%, The substitution T — g induces
a ring homomorphism h : Fy[r] — (Cg — Cg). We will write 7,[o¢] for the
image of 7, under this . Then m,[0g](Xo) = Xn. The m x m matrices over
F, representing mp5(0p,,] and wse[ap,,] are shown in figure 2.

Now define an extension map ext, : Cg — Cgypm by ext,(Z) = Cieln]
7(Z) x {i +1}. It is easy to see that o(ext,(Z))(v') = 0 for all v € V,
1 €1 < n. Hence we have

ext,(Z) lies in the kernel of oy iff 7a[06](Z) = 0. (3.3)

According to (3.3), the configuration Z in Cg can be extended to at most
one configuration in e kernel of oy}, namely to ext,(Z). This is the case
iff 7,[06](Z) = 0. By the linearity of ext, and =,, we have established the
following lemma which provides an upper bound on the co-rank of rule o on

G % [n].

Lemma 3.2. The kernel of ogyp, has the form ext,(ker(,[og])). In par-
ticular, d(G % [n]) = co-rank(m,[og]) < |G].

The situation for cyclic product graphs of the form G x (n) is quite
similar. Suppose Xy and X; are two configurations on G. As before for
acyclic product automata, define inductively a sequence of configurations by

Xiyz = 7(Xipa) + Xi.
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Figure 2: The F;-matrices representing mas[o, ] and mso [a'}?5 o]- A box
represents a 1 and a blank represents a 0 in F5.

Using the linearity of 7 one verifies by induction that for all ¢ > 0
Xi o= mio(Xo) + misa(XY).

Here, we assume 7_; := 0 and 7., := id. Therefore, define I, : Cg x Cg
— CG X OG by

(X, Y) i= (mp-2(X) + Tn-1(Y), mp1(X) + ma(Y)). (3.4)
Again, define an extension map ext, : Cg X Cg — Cox(n) by ext(X,Y) =
Tiepj(miza(X) 4+ mi1(Y)) x {i + 1}. It is not hard to see that Xo, X, can

be extended to a configuration in the kernel of o on G x (n) iff

ext, (Xg, X1) lies in the kernel of o iff (3.5)
Xn = Xo a.nd Xn.‘x.] = X1 lff
HH(XU,Xl) = (Xo,X}_).

We have the following analogue of lemma 3.2.

Lemma 3.3. The kernel of ogy(n) has the form ext,(ker(Il.[og])). In par-
ticular, d(G x (n)) = co-rank(Il,[og]) < 2-|G|.
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For some product graphs, the extension procedure from the last lemmata
can be used to explicitly construct predecessors of 0 in G x [n]. The next
proposition is easily established by induction on n.

Proposition 3.4. Let X in C¢ be a fixed point of og and Y in the kernel
of og. Then

:rrn[O‘G](X)={E]X g s | 8
rn{aGJ(Y)={3,’ s (67
Example 4

In the special case G = C,, there is always a non-trivial fixed point of
og : og(l) = 1. Hence, by (3.5), if n = 2 (mod 3), the configuration
(1,1,0,1,1,0,...,1,1) on the cylinder C,, . lies in the kernel of ot. If 3
divides m and n is odd, then by (3.6) the configuration (V,0,Y,0,...,0,Y)
lies in the kernel of o+ on the cylinder C,,, where Y = 1+2+4+5+
..+ (m—2)+ (m —1). Similarly, f n = 0 (mod 3), the configuration
(1,1,0,1,1,0,...,1,1) on the torus T, , lies in the kernel of o* by (3.4). If
3 divides m and n is even, then the configuration (Y,0,Y,0,...,0,Y) lies in
the kernel of o* on the torus T, ,.

Second order c-automata

The sequence of configurations m;(Z) in Cg, 7 2 0, in the extension procedure
can also be thought of as the evolution of Z on a second-order g-automaton
on G. In second-order o-automaton, the next configuration depends not
only on the current configuration but also its predecessor. Initially, two seed
configurations are needed to begin the evolution. In particular, a second-
order g-automaton is a graph G = (V, E,, E;) with two edge sets E; and E,.
Let 0; : Cg — Cg denote the rule determined by E; (i.e., 0i(X) = ET - X)
and define the second-order rule oy : Cg x Cg — Cg by

Jlg](X, Y) = O'l(X) + GQ(Y).

Thus, op31(X,Y) is a linear function of both X and Y. Given seed con-
figurations Xy, X; one may inductively define a sequence of configurations
by

X = Urz](Xo, Xl) = 0[2}(Xn—2:Xn—-1)
for all n > 2.
Specifically, to generate the sequence of configurations that occurs during

the extension of a seed configuration Z in Cg, define the second-order rule
g:C%— Cg by
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Figure 3: Evolution of initial configurations 0, o*(0) on P, under
rule ot

a(X,Y) =X +ag(Y).

Clearly, ;(Z) = g'(Z,0¢(Z)) for all : > 0. For undirected graphs g* and
o~ are defined in the obvious fashion.

Figure 3 shows the first 100 generations obtained from seed configura-
tions 0, *(0) on the bi-infinite path P, using rule g*. The two-dimensional
pattern obtained in this fashion is self-similar and has fractal dimension
log,((3 + +/17)/2 =~ 1.83. Note, however, that rule g~ generates a simple
regular checkerboard pattern (see also lemma 3.7 below).

The following lemma describes the periodicity properties of g-automata.

Lemma 3.5. Let S be a finite dimensional vector space over F3 and 7 : § —
S a linear operator on S, m > 1. Define the polynomials 7, as in (3.2). Then
there exists a number N > 2 such that

(1) mn[r] = 0 and Ty 4q[r] = id.
(2) For all n 2> 0;T4[T] = TmmoaN+1[T]-
(3) For all k,0 < k < N : mp_1[7] = wn—i[7] (3.1)

Proof. Let End(S) denote the ring of all linear maps from S to itself. Define
a function p : End(S)? — End(S)? by p(f,g) := (9,7 ¢ g + f). Note that p
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is a bi-linear map. Furthermore, p is clearly injective and thus a bijection.
Thus, for every pair (f,g) in End(S)? there exists a number r > 0 such that
o' (f,9) = (f,9). Let 7(f, g) denote the least such r. For 7 # 0, we must have
r(id, 7) > 2. Furthermore, for all f,g: p~'(f,g) = (t o f + g, f). Hence for
r #0 04016, 1) = p(id, ) = (0,id). But p(id,7) = (malr], mialr]).
Setting N := r(id,7) —1 we have my[7] = 0 and 7y4,[7] = id; thus, (1) and
(2) follow. A straightforward induction on k now establishes (3). i
Following lemma 3.5 we may define

¥(G) := min(n > 1l|za[og] = 0 A 7nsog] = id
and
F(G) := min(n > 1|ma[oc] = 0).

For symmetric graphs G, the functions (G, o), 4(G, 0™ ) and so forth are
defined analogously. It is convenient to think of the sequence (m;[7] : i > 0)
as being extended to (m;[7] : i > —1) where 7_;[7] := 0. The latter sequence
consists of infinitely many repetitions of the following basic block (for the
sake of clarity we write m; instead of =;[7]):

Tty Ty vy Wiy Wy as 570 for 7(G) even ,k = v(G)/2 and
Ty Ty iy Fhmls Ths Mty <3 Ko for v(G) odd, k = |7(G)/2].(3.2)

Hence the sequence (m;[7r] : ¢ > —1) has a period of length v(G) +1.
Consequently, d(G x [n]) = d(G x [no]) where ng := n mod 7(G) +1. Now
choose configurations Xj,..., Xy, d := d(G X [ng]), that can be extended to a
basis of the kernel of o on P,,. Then a basis for the kernel of o on G'x[n], n =
no (mody(G) + 1), has the form ext,(X;), 2 = 1,...,d. Then configurations
in the basis consist of several copies of the configurations ext,,(X;).

One can show that all the terms m;[7] are different from 0, with the
possible exception of mi[7] in the second case. Hence F(G) < v(G) implies
1(G) = 29(G) + 1.

Theorem 3.6. For every finite graph G there exists a number n > 1 such
that (1) the kernel of rule o on the product graph G % [n] has dimension |G|,
(2) the kernel of rule o on the cylinder G x (n + 1) has dimension 2 - |G|.

Proof. According to lemma 3.5, we can set n := 4(G) for the first part of
the theorem. To maximize the co-rank of ¢ for cyclic products of the form
G x (m), we have to make sure that IL,(X,Y) = (X,Y) for all X,Y in Cq.
According to (3.4) and (3.5), it suffices to have 7y = 0 and T2 = 7 =
id. But m = 5(G) + 1 has these properties again by lemma 3.5 and we are
done. B

In order to determine y(Pn,0”) and 4(Cpn, 07 ) let us define the following
“checkerboard” matrices over F5. Let m > 1 and for k, 1 < k < m, define
matrices My, in F3'™ by My ,(i,7) = 1iff
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Jj=k—1—1i+42v, somev=0,...,i—1,7<kor
j=1l—k+1+2v, somev=0,....,.k—1,k<i<m-—k+1lor
j=1—k+t+4+2v, somev=0,....m—i,m—k+1<i<m.

The following picture shows M3 10.

Observe that My, when construed as a configuration on P, x P, is a
predecessor of 0. In fact, {My |k € [m]} is a basis of the kernel of ¢~. The
cardinality of My ,, as a configuration is k- (m — k 4+ 1). Hence, by theorem
2.4, 1 has a predecessor on P,, x P,, under rule ¢~ iff m is odd.

Returning to the function v(P,0~) note that M, is the matrix repre-
sentation of o . By induction on n one can easily show that My, - M; .,
+Mi1m = Mg m and My, « My +Mig1,m = Mi_1,m, for all appropriate
k. Thus, we have established the following lemma.

Lemma 3.7. Let m > 1 and let P,, be the path on m points. Then the
matrix over F, representing ,[op | has the following form:

0 ifn =m,2m + 1(mod2m + 2)
Talop | =8 Mim ifk=1+nmod (2m+2) (3.3)
Mim iHk=2m+1—nmod(2m+2).
Thus, ¥(Pp,07) =2-m+ 1 and (Pp,0”) = m.

Lemma 3.8. Let m > 1 and let C,,, be the cycle on m points. Then

- _ ) m~1 meven
i B gy T (39

Furthermore, ¥(Cr,,07) = ¥(C, 0™ for all m.

Proof. First consider the Lindenmayer automaton with rule ¢~ on P,. A
simple induction shows that m[op_](0) = ¥i_o,_+(—t + 2i). Now let Cp, be
a cycle on points {0,...,m — 1}. Clearly, m[og_](0) = T, +(—t + 2i)
modm. Let us assume m is even, say m = 2k. Then certainly m[og,_](0)
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#0forallt <m—1. But #p_sf[oz_](0) = Tico,...2k-1(—2k + 1+ 2i) mod 2k
= Yico..k—1 120+ Ticp ok —2k+14+21 =T 0, x1 14214+ Tico,. k1
14 2¢ =0. Thus, 9(Cm,0”) =7(Cm,0~) = m — 1. The argument for odd
m is similar and will be omitted. B

Our next theorem gives a closed form description for d(P,, x P,,c~). For
natural numbers z, y let ged(z,y) denote their greatest common divisor.

Theorem 3.9. For all m, n > 0 the kernel of rule o~ on the m x n grid
P,, x P, has dimension gcd(m + 1,n + 1) —1. In particular, the m x n grid
is reversible under rule ¢~ iff m 4+ 1 and n + 1 are relatively prime.

Proof. For the sake of simplicity, let us write [m,n] for d(P,, x P,,07).
Thus for example [m,n] = [n,m]. Using this fact as well as the periodicity
of the 7, operators one obtains the following recurrence relations.

0 ifmn=0
m fn=mVn=2m+41

[m,n] := < [n,m] fn<m (3.5)
[m,2m —n] ifm<n<2m

[myn mod (2m +2)] ifn>2m+2.

Equation (3.12) may be construed as a recursive algorithm for the com-
putation of d(P,, X Ppn,o”). Notice that the algorithm is vaguely similar to
the Euclidean algorithm for the greatest common divisor of two numbers.
Correctness of the algorithm is established by induction on the depth of the
recursion. Clauses 1 and 3 are trivial. Clauses 2, 4, and 5 all follow from
(3.9) together with lemma 3.7. To see convergence, observe that the value of
m + n decreases at least at every other step in the recursion.

Finally, one shows by induction on the depth of the recursion in (3.12)
that [m,n] = ged(m + 1,n 4+ 1) —1. This is obvious for clauses 1, 2, and 3.
For the fourth clause, we have [m,n] = [m,2m —n] = ged(m+1,2m—n+1)
—1=gcd(m+1,2(m+1)—(n+1)) =1 = ged(m + 1,n+ 1) —1. Similarly,
for the fifth clause [m,n] = [m,n mod 2m + 2] = ged(m +1, (nmod 2m +2)
+1) -1 =ged(m+1, (nmod 2(m+1)+1) -1 =ged(m +1,n+1) —1.

This finishes the proof. B

As an immediate consequence of theorem 3.9, all grids of the form P,_; x
P, where pis a prime are irreversible under rule ¢~ iff 41 is a multiple of p,
in which case the dimension of the kernel of ¢~ has dimension p — 1. Figure
4 shows the irreversible grids P, x P, fr 1 <n, m < 80. Geometrically the
last result may be interpreted as follows. Let p := ged(m+1,n+1). One can
define a simulation f : P,, — Pp as in the remark following proposition 3.1.
As5(P,,0”) = p f lifts all the 27 configurations in the kernel of ¢~ on P, , to
configurations in the kernel of ¢~ on P, ,. Hence d(Ppp,07) < d(Phpp,07)
and the theorem shows that equality holds. Hence the kernel of o has
the form f(ker(op, . By theorem 2.7, the configuration 1 has a predecessor

on P, under rule o~ iff p is even or (m + 1)(n +1)/(p+1)* is even.



22 Klaus Sutner

sepeegues
et et
gl e e
l.lll-l!l-l!
ot o

R o e
o Bk R B S
LN __J : - . —'l -

X ot e § oy
S, 2 afegalamicke: [y

oot oy B 3 o e

koo

T

P e T

Figure 4: Irreversible grids P,, X P, under rule ¢, 1 < m, n < 80.
A box in position m,n indicates that P,, X P, is irreversible.

The proof of theorem 3.9 can easily be modified to obtain a corresponding
result for tori of the form C,, x C,. With slightly more effort, one can
establish a similar result for cylinders P, x C,.

Theorem 3.10. For all m, n > 0 the kernel of rule = on the m x n torus
Cm % C, has dimension 2 - gcd(m,n) —mn mod 2. All tori are irreversible
under rule o~

Proof. The argument is analogous to the proof of the last theorem; we will
only state the recurrence relations. Again, we use the abbreviation [m,n] :=
A Ch % Cpyo™)s

2n ifm=0V(n=mAmeven)
2n—1 ifn=mAmodd
[m,n] :={ [n,m] ifn<m (3.6)

[m,2m —n] ifm<n<2m
[m,n mod 2m] if n > 2m.

The situation for cylinders of the form C,, x P, is slightly more compli-
cated due to the fact that C, x P, is isomorphic to C, x P, only in the
trivial case m = n. The recurrence relations for cylinders must therefore
reduce both arguments m and n separately.

Theorem 3.11. For allm, n > 0 the kernel of rule o~ on the m x n cylinder
C,, X P, has dimension
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ged(my,n+1)—1  if 0 = 03(m) = 02(n + 1)
ged(m,n + 1) if 03(m) < 02(n + 1) or 3.7

0 < oy(m) = 02(n +1) (7)
2ged(m,n+ 1) — 2 otherwise.

d(CuX Ppyo™) =

Hence the cylinder C,, x P, is reversible under rule ¢~ iff m and n + 1 are
relatively prime and either both m and n + 1 are odd or the exponent of 2
in the prime decomposition of m is strictly larger than the exponent of 2 in
the prime decomposition of n + 1.

Proof. Again we will only state the recurrence relations. We use the abbre-
viation [m,n] = d(Cy, x Py,07).

(0 fn=0
2n ifm=0
m fm=n+1Ameven
m-—1 if m=n+1Amodd
m f2m=n+1

[m,n] == { 2n 42 —m,n] ifn+l<m<2n+2 (38)

[mmod2n+2,n] if2n+2<m
[m,n mod m] ifm <nAmeven
[m,2m—2—-n] ifm<n<2m—2Amodd

| [m,n mod 2m] if n > 2m.

By way of comparison, the second-order Lindenmayer automaton on P,
using rule gt shows far more complicated behavior. The function v(P,,,s")
or 7(Cy,,a%) are highly irregular, as witnessed by table 2 which shows these
values for m < 40. Note that the behavior of Py is radically different from
Clyo; figure 5 shows a complete period of seed configurations 20, 19+20+21
on Cyp and the first 120 generations obtained from seed configurations 1, 1+2
on Py (recall that both Cy and Py are assumed to have vertex set [40]).
The complete period on Py has length over two million. Also observe that
v(Py,0%) = 4, we do not know whether any square other than Py4 has the
property that it maximizes the dimension of the kernel of o*. Table 3 lists
the co-rank of ot for grids P,, x P,, 3 < m, n < 40. We have been unable
to find a representation for the co-rank of ¢t even for squares P,, x P,,.

To conclude, we will prove some results about the polynomials =, =
7a|7) in F37] (as opposed to specific quotients 7,[og]) that can be used to
derive general properties of o-automata on product graphs. Geometrically,
the results are quite obvious from figure 6 and its self-similarity properties.
However, we will provide purely algebraic proofs. To obtain a somewhat
more explicit description of 7, than the one given in (3.2), let ¢, ; in F; be
the coefficient of term 77 in m,, i.e.,

Ty = Z Cn'jTj.

0<i<n
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(a) The first 120 generations of an orbit on the
automaton on the path of length 40. (b) The first period of an orbit

on the gt-automaton on the cycle of length 40.
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m P, Cilm Py e
1 2 5|21 371- 1169
2 3 2122 4093-  185-
3 11- 5|23 95 6140
4 9- 5|24 2049- 47
5 23 14125 251- 3074
6 17- 11|26 2043  125-
T 23- 827 71- 3065
8 27 11-| 28 6553- 35-
9 59- 4129 2039 9830

10 61- 29- |30 681- 1019

11 47 92131 95- 1022

12 125- 23| 32 4091 47-

13 35- 6233 1019- 2045
14 339 17-| 34 8189-  509-
15 47- 509 | 35 335 4094
16 509- 23-|36 7181- 167
17 167 254 | 37 2051- 3590
18 1025- 83|38 16379 1025-
19  119- 51239 239- 8189
20 2339 59- |40 2097149- 119-

Table 2: The values of y(Pp,0%) and 7(Cp,0t) for m < 40 (- indi-
cates v < 7).

The following recurrence relations hold:
Cop =1
cyo :=0,¢11 :=1
Ck42,0 = Cko
Ck42,j4+1 = Ck41,j + Ckj41-

The coefficients ¢, ; can again be generated by a one-dimensional second-
order o-automaton. In fact, the automaton this time is “one-way”. The
underlying graph is G := (N, Ey, E,) where E; := {(u,u)|u > 0} and E; :=
{(u,u + 1)ju > 0}. The two seed configurations are Zg = 0 and Z; = 1.
Figure 6 shows the first 100 generations of configurations obtained in this
way; note that the resulting fractal structure resembles the one obtained from
P, and o~ after a rotation. Both structures have fractal dimension log, 3; the
coefficients ¢, ; thus should not be expected to have any simple description.
In any case, a straightforward induction yields the next proposition.

Proposition 8.12. Let 0 < j < n. The coefficient ¢, ; is zero whenever

n + j is odd. For n + j even we have ¢, ; = ( (w +j])/2 ) mod 2.
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Table 3: Dimension of kernel of o for grids Py, x P,. Blanks indicate
a 0.

In order to apply the last proposition, a simple method to determine the
parity of binomial coefficients is needed. One useful criterion for the oddness
of binomial coefficients can be obtained as follows. Let z be a natural number,
0 < z < 2!, The binary expansion of z may be construed as a bit-vector
describing a subset S; of {0,...,t —1}. Note that for 0 <y <z :5, C S,
iff Sz—y € S;. The following proposition is proved in [7].

Proposition 3.13. Let 0 < y < z. Then ( ; ) is odd iff S, C S,.

For numbers n with simple binomial expansion, this allows in conjunction
with proposition 3.12 to calculate m,, explicitly. The next two theorems are
examples of this procedure.

Theorem 3.14. Let n=2"—1, v > 1. Then 7, = ™. Hence d{G x [n]) =
co-rank(o). In particular, the o-automaton on G x [n] is reversible iff the
o-automaton on G Is reversible.
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Figure 6: The coefficients of the polynomials 7, for n < 100. A box
represents a 1, and a blank represents a 0 in Fj.

Proof. By our assumption n = 2¥—1, thus n is odd and the binary expansion
[n]2 of n has the form 11..11. By proposition 3.12 and 3.13, ¢, ; = 1 iff j is
odd and S; € S(n4j)2- Say, j =2k+1,0 <k <2"7!' —1,and we get ¢, ; = 1
iff Sor41 © Sge-14k. The latter condition clearly holds only for k£ = 2~ — 1.
Thus 7, = 7" and we are done. B

The following theorem is a stronger version of proposition 3.1.

Theorem 3.15. For all n > 0: Tp4y = T 07y 0 Ty,
Proof. As F, has characteristic two we have

T O Ty = ch,jTZj.
i<n

Thus it suffices to show that czny12j41 = cnjforall j =0,...,n (cony12; =0
by proposition 3.12). Note that the binary expansion of 2n 4+ 1 has the
form [2n + 1]; = [r];1. Similarly, [2j + 1]s = [j].1. Therefore, S; C S, iff
S2i41 € Sp41 and we are done by propositions 3.12 and 3.13. B

According to theorem 3.6, for every m we have d( P, n,0%) = m where
n = 4(Pn,0%). As mentioned above, we do not know how to compute
4(Ppn,0t) from m in any other than the brute force way. However, for special
values of m, a simple description of y(P,,,o%) is available as expressed in the
following lemma. Note that for these m y(P,,o") grows linearly in m.

Lemma 3.16. m =2 —1andn=3-2""!' —1, v > 1. Then the kernel of
ot on P,,, has (the maximal) dimension m: d(P,, »,c%) = m.
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Proof. Using propositions 3.12 and 3.13 one verifies that 7, [r] = 727 147",

Now o is an automorphisms of Cp,, and one can show that its order in the

group of automorphisms is 2 (i.e., 27 is the least number k > 1 such that
(o;m)k = id). Therefore, we have (O_;m)zv = id and

malot,) = (£, 4 (o3,)" = 0

Hence d(Pppn,0") = co-rank(my[o} ]) = m = min(n,m) is maximal. B
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