Complex Systems 3 (1989) 349-381

A Focused Backpropagation Algorithm
for Temporal Pattern Recognition

Michael C. Mozer
Department of Computer Science and Institute of Cognitive Science,
University of Colorado, Boulder, CO 80309, USA

Abstract. Time is at the heart of many pattern recognition tasks,
e.g., speech recognition. However, connectionist learning algorithms
to date are not well suited for dealing with time-varying input pat-
terns. This paper introduces a specialized connectionist architecture
and corresponding specialization of the backpropagation learning al-
gorithm that operates efficiently on temporal sequences. The key fea-
ture of the architecture is a layer of self-connected hidden units that
integrate their current value with the new input at each time step
to construct a static representation of the temporal input sequence.
This architecture avoids two deficiencies found in other models of se-
quence recognition: first, it reduces the difficulty of temporal credit
assignment by focusing the backpropagated error signal; second, it
eliminates the need for a buffer to hold the input sequence and/or in-
termediate activity levels. The latter property is due to the fact that
during the forward (activation) phase, incremental activity traces can
be locally computed that hold all information necessary for backprop-
agation in time. It is argued that this architecture should scale better
than conventional recurrent architectures with respect to sequence
length. The architecture has been used to implement a temporal ver-
sion of Rumelhart and McClelland’s verb past-tense model [1]. The
hidden units learn to behave something like Rumelhart and McClel-
land’s “Wickelphones,” a rich and flexible representation of temporal
information.

1. Introduction

Connectionist models have proven successful in a variety of pattern recogni-
tion tasks (e.g., [2,3]). In some respects, these models are amazingly powerful
— more so than the human brain. For instance, take an image composed of
light intensities and randomly rearrange pixels in the image. Most connec-
tionist architectures can learn to recognize the permuted image as readily as
the original [4], whereas humans would no doubt have great difficulty with

© 1989 Complex Systems Publications, Inc.

350 Michael C. Mozer

X (1)
X (2) Temporal
. ; Pattern ;
. Recognition 0r)
System
X(t)

Figure 1: Abstract characterization of the temporal pattern recogni-
tion task. X(t) indicates the input pattern at time ¢, O(¢) the output
pattern.

this task. In other respects, however, the pattern recognition abilities of
connectionist models are quite primitive. While humans have little trouble
processing temporal patterns — indeed, all input to the sensory systems is
intrinsically temporal in nature — few connectionist models deal with time.
Because time is at the essence of many pattern recognition tasks, it is im-
portant to develop better methods of incorporating time into connectionist
networks.

Figure 1 depicts an abstract characterization of the temporal pattern
recognition task. Time is quantized into discrete steps. A sequence of inputs
is presented to the recognition system, one per time step. Each element of
the sequence is represented as a vector of feature values. At each point in
time, the system may be required to produce a response, also represented as
a vector of feature values, contingent on the input sequence to that point.
In the simplest case, shown in figure 1, a response is required only after the
entire input sequence has been presented.

Many important problems are of this class. For instance, recognizing
speech involves sampling the acoustic signal at regular intervals and produc-
ing as output a representation of phonemes or words or phrases. Similarly,
natural language processing consists of analyzing a sequence of words to yield
a structural or semantic description. Event perception can be viewed as an-
alyzing a sequence of snapshots of the visual world to produce a description
of the ensuing event. Freyd [5] has argued that even for some static ob-
jects, perception may be dynamic in the sense that a temporal dimension is
incorporated into the perceptual analysis.

2. Previous connectionist approaches to temporal pattern
recognition

One popular approach to temporal pattern recognition has been to construct
a buffer to hold the n most recent elements of the input sequence [6-13]. Such

A Focused Backpropagation Algorithm 351

a buffer can be implemented using a shift register or delay lines. The buffer
turns a temporal recognition problem into a spatial recognition problem in
which all relevant information for making a response is simultaneously avail-
able. Because connectionist models are relatively good at spatial recognition
problems, this approach seems assured of some success.

However, the approach has four serious drawbacks. First, the buffer must
be sufficient in size to accommodate the longest possible input sequence.
With an n-element buffer, no sequence of duration greater than n can be
recognized. Thus, the longest possible sequence — the longest interval over
which context may play a role — must be known in advance. Even if a fairly
large buffer can be built, say one sufficient to recognize a phoneme or demi-
syllable, what about higher levels of analysis — words, phrases, sentences,
paragraphs? At some point, one needs to deal with the fact that not all input
information can be available to the system simultaneously. A hierarchy of
buffers may partially alleviate this problem, but will still require the advance
specification of maximum sequence duration.

A second drawback of using a buffer is that by making a great deal of
information simultaneously available, much computation is required at each
time step. Essentially, all information within the buffer must be reprocessed
whenever the buffer state changes. This is not a problem if one has dedicated
parallel hardware, but simulations of such a connectionist system on a serial
machine can be computationally expensive.

Third, when a buffer is used as input to a connectionist network, each
element of the buffer must be connected to higher layers of the network.
Consequently, as the buffer grows, so does the number of weights. This means
that a large number of training examples must be used or else the network
will not generalize well [14]. Alternatively, the weights must be constrained
in some manner so as to reduce the number of free parameters [13,15].

Fourth, the use of a buffer makes it difficult to achieve invariance under
translation in time. Because the buffer turns shifts in time into shifts in space
(i-e., buffer position), the representation of an input sequence occurring at
one time will have little resemblance to that of an input sequence occurring at
another time. Consequently, if training and test sequences are misaligned, the
sequences will likely not be recognized as the same. One way of minimizing
this problem is to shift inputs continuously across the buffer to ensure that
each sequence is presented in each position, both during training and testing.
However, this solution introduces noise into the training phase and additional
computation into the testing phase.

These deficiencies of the buffer model argue that the spatial metaphor for
time is not viable; a richer, more flexible representation of time is needed.
Similar arguments have been raised elsewhere [16-18]. Despite its drawbacks,
the buffer model has two properties in common with any model of temporal
pattern recognition. First, some memory of the input history is required.
Second, a function must be specified to combine the current memory (or
temporal context) and the current input to form a new temporal context:

- C(t+1) = f(C(1),X(1)),

352 Michael C. Mozer

where C(t) is a vector representing the context at time ¢, X(¢) the input at
time ¢, and f the mapping function. The buffer model is a simple scheme,
where the temporal context consists of the n most recent sequence elements,
and f is implemented by the shift-register operation of the buffer. Given the
inadequacy of the buffer model, one would like to discover ways of represent-
ing temporal context that avoid turning intrinsically temporal information
into spatial information.

One idea is based on the fact that, in a connectionist network, the con-
nections from one set of units to another implement a mapping. Thus, by
representing the input X(¢) and context C(t) as patterns of activity on two
sets of units, the weights connecting the input units to the context units and
the context units to themselves specify a mapping function f. Jordan [19]
and Stornetta, Hogg, and Huberman [17] have explored this approach us-
ing fixed weights that do not change with experience. In the Stornetta et
al. work, there is one context unit per input unit, and each context unit is
connected to itself and its corresponding input unit. In other words, the
mapping function is

£(C,X) = kC + kX,

where k; and k, are fixed constants.

This type of network has no spatial representation of time. Consequently,
‘the architecture does not require replicated input units, in contrast to the
buffer model which requires n copies of the input units for an n-element
buffer. Further, this architecture does not place a rigid upper bound on the
amount of temporal context that can be considered, whereas the buffer model
can remember only the n most recent sequence elements. Nonetheless, this
approach is rather inflexible in that the mapping function used to construct
the temporal context is predetermined and fixed. As a result, the representa-
tion of temporal context must be sufficiently rich that it can accommodate a
wide variety of tasks; it cannot afford to discard too much information. The
alternative to this general, task-independent representation is one suited to
the particular task being performed, wherein only the input information rel-
evant to the task need be retained.

Connectionist learning algorithms provide a means of adaptively con-
structing internal representations. However, the most promising and popu-
lar algorithm, backpropagation [20], is designed for feedforward networks. In
order to represent temporal context, recurrent networks are required because
the current context must depend on the previous. Backpropagation can be
used to train recurrent networks if the network is “unfolded in time” [20].
The basic trick can be seen by comparing the recurrent network in figure 2a
to the equivalent unfolded network in figure 2b. The network in figure 2a
consists of four layers: input, context, hidden, and output. The input pattern
is integrated with the current context to form a new context. The context is
then mapped, by way of the hidden layer, to an output. In figure 2b, the same
functionality is achieved by replicating the input and context layers for each
element of the input sequence and by constraining the weights such that the

A Focused Backpropagation Algorithm 353

input-to-context connections and context-to-context connections are equal
across time. Rather than having four pools of units, the unfolded network
contains 24 2¢ pools, where ¢ is the number of elements in the input sequence.
Because the unfolded network is feedforward, the backpropagation algorithm
can be applied to adjust the connection strengths so that a given input se-
quence will yield a target output.! The weight constraints are enforced by
maintaining only one set of input-to-context and context-to-context weights.
During the backpropagation phase, the changes prescribed for each weight
at each level are summed together to give a net weight change.

Training a network using the unfolding procedure has two significant
drawbacks. First, part of the architecture must be replicated for each time
step of the input sequence. In implementing the unfolding procedure, it is not
actually necessary to replicate processing units; units need be instantiated
only once if each unit remembers its activity level at each point in time —
i.e., maintains a stack of activity levels. During forward propagation, values
are pushed on to this stack, and during backpropagation, values are popped
in reverse temporal order.?

Second, the unfolding procedure creates a deeply layered network through
which error signals must be propagated. This is bad not only because the
time to perform backpropagation is proportional to the depth of the network,
but also because the further back an error signal is propagated, the more
dispersed it becomes. To explain what I mean by “dispersed,” consider
that the purpose of backpropagation is to assign blame to each unit for its
contribution to the error. However, the assignment of blame to a given unit
is meaningful only in the context of the response properties of units higher
in the network. If the present responses of these units do not resemble their
eventual responses, then the lower-layer unit cannot obtain an independently
informative measure of its contribution to the error; backpropagation through
the upper layers will effectively redistribute the error signal in some random
fashion. Thus, in deep networks, especially where the relevant input signal is
found in the lower layers, learning can be very slow. This argument is born
out by empirical comparisons of learning speed using temporal versus spatial
patterns made by myself and by Steven Nowlan [29].

3. Constraints on network architecture

Given the inherent difficulties in using backpropagation to train a recur-
rent network to recognize temporal sequences, one useful tack is to look for
constraints on solutions the network might discover that could simplify the

ntermediate output values could readily be trained by replicating the hidden and
output units at intermediate time steps and injecting an additional error signal into the
network via the output units.

? Almeida [20] and Pineda [21] have proposed a variation of the backpropagation algo-
rithm for recurrent networks that does not need an activity-level history. However, the
algorithm assumes a fixed input; hence, it is suitable for pattern completion and other
relaxation problems, not for analyzing a time-varying input pattern.

354 Michael C. Mozer

OUTPUT
(a)
4
HIDDEN
4
CONTEXT
4
INPUT
(b) OUTPUT (t)
4
HIDDEN (t)
4
CONTEXT (t)
y \
INPUT (t) CONTEXT (t-1)
4 ‘l~\\\\\\s>
INPUT (t-1) CONTEXT (t-2)
4 1l~\\\\\\
INPUT(t-2) =R E

Figure 2: (a) A four-layered recurrent network consisting of input,
context, hidden, and output units. Each labeled box indicates a set of
processing units. The arrows indicate complete connectivity from one
layer to another. (b) The same network unfolded in time. The input
and context layers are replicated for each element of the sequence.
The weights are constrained so that the input-context connections
are equal across time, as are the context-context connections.

A Focused Backpropagation Algorithm 355

learning problem. This strategy of building a priori knowledge into the net-
work directly can often speed learning and improve generalization [14].

Consider the sort of representation one might like to obtain in the context
layer of the network in figure 2a. This representation should satisfy four
criteria. First, it must be a static encoding of the temporal input pattern,
one that holds on to whichever features of the input are needed to produce
the desired response. Second, it must be capable of encoding sequences of
varying lengths with a fixed number of units. Third, it must be capable of
encoding relationships between events. Fourth, it should provide a natural
basis for generalization.

Wickelgren [23] has suggested a representational scheme that seems to
satisfy these criteria and has been applied successfully in several connection-
ist models [1,24-26]. The basic idea is to encode each element of a sequence
with respect to its local context. For example, consider the phonetic encod-
ing of a word. Wickelgren proposed context-sensitive phoneme units, each
responding to a particular phoneme in the context of a particular predecessor
and successor. I will call these units Wickelphones, after the terminology of
Rumelhart and McClelland [1]. If the word explain had the phonetic spelling
/eksplAn/, it would be composed of the Wickelphones _ey, ks, kSp, sP1,
pla, 1An, and gn_ (where the dash indicates a word boundary). Assuming
one Wickelphone unit for each possible phoneme triple, activation of a word
would correspond to a distributed pattern of activity over the Wickelphone
units.

With a fixed number of Wickelphone units, it is possible to represent
uniquely arbitrary strings of varying length. This means that the unordered
set of Wickelphones is sufficient to allow for the unambiguous reconstruc-
tion of the ordered string. There are difficulties if the string contains re-
peated substrings, e.g., Mississippi, but these difficulties can be overcome.
The Wickelphone representation can be generalized to arbitrary sequences
by substituting sequence elements for phonemes. In the general case, I call
the context-sensitive encoding a Wickelement representation.

The trouble with Wickelements is that there are too many of them.
Rumelhart and McClelland reduced the number of Wickelphones by devis-
ing a more compact and distributed encoding that depended on features of
phonemes rather than the phonemes themselves. The number of units can
also be reduced on the grounds that not all Wickelements are needed for
every task. For instance, a pki Wickelphone is unnecessary for representing
English words. Thus, it would be desirable to learn only the task-relevant
Wickelements.

How might the network in figure 2a be modified to learn an internal
representation in the context layer that resembled Wickelements? First, to
obtain local context-sensitive codes, the sequence might be presented in local
“chunks.” This can be achieved by turning the input layer into a small buffer,
so that at time ¢ the input pattern consists of the sequence elements at, say,
times ¢t — 2, ¢t — 1, and ¢. Then, the context units can detect conjunctions of
sequence elements, or conjunctions of features of sequence elements. Once

356 Michael C. Mozer

activated by a pattern in the input, the context units should remain on. Thus,
it seems sensible to have self-connected context units, but not to connect each
context unit to each other, say an activation function like

Gt +1) = dics(t) + snet; (1)), (3.1)

where ¢;(t) is the activity level of context unit ¢ at time ¢, d; is a decay weight
associated with the unit, s is a sigmoid squashing function, and net;(t) is the
net input to the unit:

neti(t) = 3 wjiz;(t),

z;(t) being the activity of input unit j at time ¢, w;; the connection strength
from input unit j to context unit ¢. Thus, a context unit adds its current
activity, weighted by the decay factor, to the new input at each time. The
decay factor allows old information to fade over time if d; is less than one.
Such decay connections have proven useful in other work [17-19,27].

To summarize, a recurrent network with this architecture, which I call the
focused architecture for reasons that will become clear shortly, differs from
a full recurrent architecture in three respects: (1) the input layer consists
of a small temporal buffer holding several elements of the input sequence,
(2) connectivity in the context layer is restricted to one-to-one recurrent
connections, and (3) integration over time in the context layer is linear.

4. The focused backpropagation algorithm

It turns out that the focused architecture has properties that overcome the
two major limitations discussed earlier of a full recurrent architecture. First,
backpropagation is “focused”: the error signal does not disperse as it prop-
agates back in time. Second, to adjust the weights, backpropagation in time
— and saving an activity history stack — is unnecessary.

To get an intuition as to why these two facts are true, consider the weight
update procedure when a t-element sequence is presented to a focused recur-
rent network. Following the sequence, at time ¢, the network is shown a
target output vector. Comparing this vector to the actual output vector
yields an error signal, . To adjust weights according to the back propaga-
tion gradient-descent procedure, it is necessary to compute

OF
&i(r) =
") = 5am)

for 7 = 1-.-t. Ordinarily, this is achieved by backpropagating in time, from
the context layer at time ¢ to t —1 to ¢ —2 and so forth. However, from (3.1)

it is clear that
oci(r)
dci(r—1)

d;.

A Focused Backpropagation Algorithm 357

Consequently,

OF dci(t) OFE

Si(r—1)= dei(r —1) = dci(t — 1) Oei(T)

The error signal, é;(7), changes just by a constant multiplicative factor, d;,
as it is propagated back in time. Thus, there is a simple relationship between
the 6;’s at various points in time.

Because of (4.1), whatever error is propagated back to the context unit
at time ¢ stays within that unit as the error is passed further back in time, in
contrast to a full recurrent network where the error is redistributed among
the context units with each backwards pass due to cross connections between
units. Error propagation with this focused architecture is therefore focused
and should not disperse in time — an apparent limitation of the full recurrent
architecture.

Error propagation with the focused architecture is also superior in a sec-
ond respect. Because of the simple relationship described by (4.1), it is not
necessary to explicitly backpropagate in time to compute ;(7) from §;(¢). In-
stead, if each connection has associated with it an activity history trace that
is incrementally updated during the forward (activation) pass, these traces
can be used to exactly achieve the effects of backpropagation in time.

The appendix derives formulas for 9E/dd; and OF/Jc;(t) in terms of
the activity traces, which yield the following weight update rules. For the
recurrent connections, d;, the rule is

Ad; = —eb;(t)au(t),
where ¢;(0) = 0 and
(1) = ci(t — 1) + d;ai(7 — 1).
Similarly, the weight update rule for the input-context connections, w;;, is
Awj; = —e6;(t)B:(1),
where 3;;(0) = 0 and
Bii(r) = s'[neti(r)z;(7)]z;(r) + difsi(r — 1).
These weight update rules are not just heuristics or approximations; they are
computationally equivalent to performing the backpropagation in time.

5. Choosing a squashing function for the context units

An interesting issue arises in the choice of a squashing function, s[u], for the
context units. If we indeed hope that the context units learn to behave as
Wickelement detectors, we would like the squashing function to have range
0-1, in order that the response is 0.0 if the input pattern does not match
the Wickelement or 1.0 if it does. But to the extent that the unit is not

358 Michael C. Mozer

a perfect Wickelement detector (as will be the case initially), it will pro-
duce small positive responses on each time step. Consequently, the activity
level of the context unit will grow in proportion to the number of sequence
elements, an undesireable property that could result in unstable learning be-
havior and poor generalization. One remedy is to use a zero-mean squashing
function, say with the range —.5 to +.5. Because positive and negative values
will cancel when summed over time, the activity of a context unit should be
independent of sequence length (at least initially, when the weights are uncor-
related with the inputs). However, the context unit will be unable to respond
to Wickelements in the manner described above: it is impossible to set the
weights so that the zero-mean squashing function yields a positive value if
the input pattern matches the Wickelement or 0.0 otherwise. To summarize,
a squashing function with the range —.5 to +.5 seems appropriate initially,
when weights are untrained and the output of a unit is more-or-less random,
but the range 0.0 to 1.0 seems necessary to perform binary discriminations
in which one of the desired output levels is 0.0.

Although one solution might be to shift the range of this function as the
network learns, I have opted for a different approach: to allow the network
to learn the zero point of the function. For each context unit, I have intro-
duced an additional parameter, z;, the zero point, and defined the squashing
function for unit 7 to be:

If 2; is 0.0, the range of the function is 0.0 to 1.0; if z; is —.5, the range is
—.5 to +.5.

As with the other parameters in the network, z; can be adjusted by gra-
dient descent. The update rule, derived as those for d; and wj;, is:

AZ,‘ = —é(si(t)’)’,'(t)
where 7;(0) = 0 and
’71'(7') =1.0 + d,”)‘,‘(T = 1)

6. Related work

Several researchers have independently discovered the idea of computing an
activity trace during the forward pass as an alternative to back propagation
in time. Williams and Zipser [30] report on a generalization to arbitrary
recurrent network architectures; this generalization is of questionable prac-
tical use, however, because the number of traces grows with the cube of
the number of units. Bachrach [27], Gori, Bengio, and De Mori [31], and
Yoshiro Miyata [32] have studied a version of the current architecture with a
more complex context-unit activation function in which the recurrent input
is contained inside the squashing function:

ci(t +1) = s[neti(t)],

A Focused Backpropagation Algorithm 359

where

net,-(t) = d,‘C,‘(t) + i (Ej(t)

In this case, the weight update rules are as before with
a;(7) = (ci(r — 1) + dia; (7 — 1))s,[net; (¢)]
and

Bii(T) = (z;(7) + diBji(T — 1))sp[nety(t)].

In practice, Miyata and I have found (3.1) to work better than (12.1)
because squashing the recurrent input tends to cause the context units to
forget their values over time. Bachrach [27] has analyzed the nature of this
“forgetting” more formally.

7. Simulation results
7.1 Implementation details

The simulations reported in the following sections used an architecture like
that shown in figure 2, except that the hidden layer was not needed; the
context layer mapped directly to the output layer.

The initial input-context and context-output connection strengths were
randomly picked from a zero-mean Gaussian distribution and were normal-
ized so that the L1 norm of the fan-in (incoming) weight vector was 2.0. The
z; were initially set to —0.5, and the d; picked at random from a uniform
distribution over the interval .99 — 1.01.

A “batch” updating procedure was used during training; that is, the
weights were updated only after a complete presentation of the training set
(an epoch). Momentum was not used. Learning rates were determined indi-
vidually for each set of connections: input-context, decay, zero points, and
context-output. The learning rates were set dynamically after each epoch
according to the following heuristic:

= iy Wi
ex = mse p min(w, Vk)
where € is the learning rate for connections of type k, mse is the mean
square error across output units and patterns for the previous epoch, W is
the mean L1 norm of the fan-in weight vector for connections of type k, Vj is
the mean L1 norm of the fan-in gradient vector for input-context and context-
output connections and the maximum magnitude for the decay and zero point
connections, and g, p, and w are constants. The mse term serves to decrease
the learning rate as the error becomes smaller; u is a discounting factor for
this term (set to values in the neighborhood of .75 — 1.0). The second term
defines a “nominal” learning rate which is set so that, on average, weight

360 Michael C. Mozer

Symbol | Activity Pattern
A 0 0 0
B 0 0 1
E 0 1 0
D 0 1 1
N 10 0
R 10 1
— 11 0

Table 1: Symbol encoding for the DEAN/DEAR/BEAR/BEAN prob-
lem.

updates change each unit’s fan-in weight vector by a fixed proportion (p,
generally .02) of its current magnitude. The parameter w specifies an upper
limit on the step size when V; becomes extremely small. This rule produces
learning rates for the decay and zero-point terms that are about one-tenth
of the other learning rates; this relatively small step size seems necessary to
ensure stability of the network.

Although I had hoped to devise a rule for automatically adjusting the
learning rates which was architecture and problem independent, the above
rule does not satisfy this requirement. The parameters x, p, and w had to be
fine tuned for most applications to give optimal performance. However, the
rule did work much better than fixed learning rates and other variants that
with which I experimented.

8. Learning Wickelements

Starting with a simple example, the network was trained to identify four
sequences: -DEAR_, DEAN_, BEAR_ and . BEAN_. Each symbol
corresponds to a single sequence element and was represented by a binary
activity pattern over three units (table 1). The input layer was a two-element
buffer through which the sequence was passed. For DEAR._, the input on
successive time steps consisted of D, DE, EA, AR, R_. The input layer
had six units, the context layer two, and the output layer four. The network’s
task was to associate each sequence with a corresponding output unit. To
perform this task, the network must learn to discriminate D from B in the
first letter position and IN from R in the fourth letter position. This can be
achieved if the context units learn to behave as Wickelement detectors. For
example, a context unit that responds to the Wickelements _D or DE serves
as a B-D discriminator; a unit that responds to R_or AR serves as an N-R
discriminator. Thus, a solution can be obtained with two context units.
Fifty replications of the simulation were run with different initial weight
configurations. The task was learned in a median of 488 training epochs, the
criterion for a correct response being that the output unit with the largest
value was the appropriate one. Figure 3 shows the result of one run. The

A Focused Backpropagation Algorithm 361

weights appear in the upper half of the figure and activity levels for each
input sequence in the lower half. The weights are grouped by connection
type, with the input-context connections in the upper-left array, followed by
the decay connections (d;), zero points (z;), and context-output connections.
Each connection is depicted as a square whose area indicates the relative
weight magnitude, and shading the weight sign — black is positive, white
is negative. The sizes of the squares are normalized within each array such
that the largest square has sides whose length is equal to that of the vertical
bars on the right edge of the array. The absolute magnitude of the largest
weight is indicated by the number in the upper-right corner. Among the
input-context connections, the largest weight magnitude is 6.47, among the
decay values 1.00, the zero points 0.02, and the context-output connections
6.84. Because normalization is performed within each array, weight magni-
tudes of different connection types must be compared with reference to the
normalization factors.

The units within each layer are numbered. The weights feeding into and
out of context unit 1 have been arranged along a single row, and the weights
of context unit 2 in the row above. Bias terms (i.e., weight lines with a fixed
input of 1.0) are also shown for the context and output units.

For the activity levels in the lower half of the figure, there are four columns
of values, one for each sequence. The input pattern itself is shown in the
lowest array. Time is represented along the vertical dimension, with the first
time step at the bottom and each succeeding one above the previous. The
input at each time reflects the buffer contents. Because the buffer holds two
sequence elements, note that the second element in the buffer at one time
step (the activity pattern in input units 4 —6) is the same as the first element
of the buffer at the next (input units 1 — 3).

Above the input pattern are, respectively, the context unit activity levels
after presentation of the final sequence element, the output unit activity
levels at this time, and the target output values. The activity level of a
unit is proportional to the area of its corresponding square. If a unit has an
activity level of 0.0, its square has no area — an empty space. The squares
are normalized such that a “unit square” — a square whose edge is the length
of one of the vertical bars—corresponds to an activity level of 1.0. While the
input, output, and target activity levels range from 0.0 to 1.0, the context
activity levels can lie outside these bounds, and are, in fact, occasionally
greater than 1.0.

With these preliminaries out of the way, consider what the network has
learned. At the completion of each sequence, the context unit activity pattern
is essentially binary. Context unit 1 is off for BEAN_and _BEAR_ and on
for DEAN_ and _DEAR_; thus, it discriminates B and D. Context unit 2
is off for BEAN_and DEAN_ and on for BEAR_and _-DEAR_; thus,
it discriminates N and R. However, the context units do not behave in a
straightforward way as Wickelements. If context unit 1 were sharply tuned
to, say, _D, the input-context weights should serve as a matched filter to the
input pattern _D. This is not the case: the weights have signs — + — — +—

362 Michael C. Mozer

6.84

‘@O O[]
~ B D. B O .DS.A7«.?.WNDIM§«D & D .l
OENOOCHE -] W] ocCommn

to context
fro

wt from input i decay zero pt ! w'to outp’ut
l] |] l H |
2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
target target target target
" B o . | . m o S e H|
1 2 3 4 1 2 3 4 1 2 3 4 ¥ 2 3 4
output output output output
5 = . | | I
1 2 1 2
context context context context
[| HE | B EEE | = HEE | =H BEEE |
" | I H N
B I [B l I
H B | B H | HE N | HE B |
HE H EE H HE HE HE [] |
1 2 3 |]] 1 2 3 4 L] s 1 2 3 4 s ° 1 2 3 4 5 L]
BEAN BEAR DEAN DEAR

Figure 3: The DEAR/DEAN/BEAR/BEAN problem. The up-
per half of the figure shows learned weights in the network, the lower
half activity levels in response to each of the four input sequences.

but the _D input pattern is 110011. Nor is context unit 1 tuned to the DE,
whose input pattern is 011010. Instead, the unit appears to be tuned equally
to both patterns. By examining the activity of the unit over time, it can
be determined that the unit is activated partly by _D and partly by DE,
but by no other input pattern. This makes sense: _D and DE are equally
valid cues to the sequence identity, and as such, evidence from each should
contribute to the response. To get a feel for why the detector responds as it
does, note that D (110011) is distinguished from B (110001) by activity in
unit 5, DE (011010) from BE (001010) by activity in unit 2. The weights
from inputs 2 and 5 to context unit 1 are positive, allowing the unit to detect
D in either context. The other weights are set so as to prevent the unit from
responding to other possible inputs. Thus, the unit selects out key features of
the Wickelements D and DE that are not found in other Wickelements. As

A Focused Backpropagation Algorithm 363

such, it behaves as a _DE Wickelement detector, and context unit 2 behaves
similarly as a AR_ detector.

Generalization testing supports the notion that the context units have
become sensitive to these Wickelements. If the input elements are permuted
to produce a sequence like AR_BE, which preserves the Wickelements AR _
and _BE, context unit responses are similar to those of the original sequences.
However, with permutations like RB_, DAER_ and DEAR (without the
end delimiters), which destroy the Wickelements AR_and BE, context unit
responses are not contingent upon the D, B, N, and R. Thus, the context
units are responding to these key letters, but in a context-dependent manner.

I must admit that most solutions discovered by the network are difficult
to interpret. The example in figure 3 is fairly clean because the d; and z; were
initially set to values near 1.0 and 0.0, respectively, and the learning rate for
these parameters was turned down, forcing final solutions with values close
to these inital ones. This encourages the context units to produce a more
sharply tuned “all-or-none” response to each sequence element.®> Nonethe-
less, even less clean solutions show the same qualitative behavior as the one
discussed.

9. Learning the regularities of verb past tense

In English, the past tense of many verbs is formed according to a simple
rule. Examples of these regular verbs are shown in table 2. Each string
denotes the phonetic encoding of the verb in italics and each symbol a single
phoneme. The notation of phonemes is the same as that used by Rumelhart
and McClelland [1], from whom the examples were borrowed. Regular verbs
can be divided into three classes, depending on whether the past tense is
formed by adding /"d/ (an “ud” sound), examples of which are shown in the
first column in table 2, /t/ (the second column), or /d/ (the third column).
The rule for determining the class of a regular verb is as follows.

If the final phoneme is dental (/d/ or /t/), add /d/;
else if the final phoneme is an unvoiced consonant, add /t/;
else (the final phoneme is voiced), add /d/.

A network was trained to classify the sixty examples in table 2. Each
phoneme was encoded by a set of four trinary acoustic features (see [1],
table 5). The input layer of the network was a two-element buffer, so a verb
like /kamp/ appeared in the buffer over time as _k, ka, am, mp, p_. The
underscore is a delimiter symbol placed at the beginning and end of each
string.

3With d; closer to 0.0, a context unit’s activity depends primarily on recent sequence
elements, allowing it to be sloppy with its response to earlier elements; likewise, with d;
much larger than 1.0, activity depends primarily on the early sequence elements, and the
unit may be sloppy with respect to recent elements. With z; closer to —0.5, all-or-none
responses are not necessary because the effect of spurious activity can be cancelled over
time.

364 Michael C. Mozer

+/°d/ +/t/ +/d/
/dEpend/ (depend) /" prOC/ (approach) /Tret"n/ (threaten)
/gld/ (guide) /bles/ (bless) /Ser/ (share)
/inklUd/ (include) /disk”s/ (discuss) /ans"r/ (answer)
/k"mand/ (command) | /embar's/ (embarrass) | /dEskrlb/ (describe)
/mOld/ (mold) [fAs/ (face) Jdz1/ (dry)
/plEd/ (plead) /help/ (help) / fAr/ (fare)
/prOvId/ (provide) /kamp/ (camp) / frlt"n/ (frighten)
/rEgord/ (regard) /kuk/ (cook) /kUl/ (cool)
/s"tWnd/ (surround) | /mark/ (mark) /k*ntAn/ (contain)
/trAd/ (trade) /n’rs/ (nurse) /krl/ (cry)
/§Wt/ (shout) /p"tC"s/ (purchase) /1"v/ (love)
/tempt/ (attempt) /pas/ (pass) /mln/ (mine)
/dEvOt/ (devote) /pik/ (pick) /prOgram/ (program)
/ekspekt/ (expect) /prOdUs/ (produce) [rEfuz/ (refuse)
/k"nsist/ (consist) /puS/ (push) [TEvVU/ (review)
/nOt/ (note) /tEC/ (reach) /s"pll/ (supply)
/prEzent/ (present) /rok/ (rock) /st"dE/ (study)
/reprEzent/ (represent) | /skraC/ (scratch) /tremb "1/ (tremble)
JtrEt/ (treat) /trAs/ (trace) [yUz/ (use) ‘
/want/ (want) /woS/ (wash) /prEvAl/ (prevail)

Table 2: Examples of regular verbs.

The network had eight input units (two time slices each consisting of four
features), two context units, and three output units— one for each verb class.
For comparison, both focused and full network architectures were studied.
The full architecture was the same as the focused except it had complete
connectivity in the context layer and an activation function like equation
(12.1) instead of (3.1). The number of connections in each architecture was
the same: the focused network requires four connections within the context
layer, two for the d; and two for the z;, and the full network also requires four,
to connect each unit to each other. Learning rate parameters (see section 7.1)
were adjusted to yield the best possible performance for each architecture.

Figure 4 shows performance on the training set for the two architectures,
averaged over fifteen runs with different initial random weights. A verb is
considered to have been categorized correctly if the most active output unit
specifies the verb’s class. Both focused and full networks are able to learn
the task, although the full network learns somewhat more quickly. Both
networks have learned the underlying rule, as indicated by their excellent
generalization performance on novel sequences (data points on far right of
figure 4).

Typical weights learned by the focused network are presented in figure 5,
along with the output levels of the two context units in response to twenty

A Focused Backpropagation Algorithm 365

100 —

Percent Correct

e y full
focus
30 | | | I | I L I | J
0 200 400 600 800 1000 gen

Epoch

Figure 4: Mean performance on the regular verb task as a function of
learning epoch for the focused and full recurrent architectures. The
bars indicate one standard error of the mean in each direction. Data
points for generalization performance are shown on the far right.

verbs. These verbs, though not part of the training set, were all classified
correctly.

The response of the context units is straightforward. Context unit 1
has a positive activity level if the final phoneme is a dental (/d/ or /t/),
negative otherwise. Context unit 2 has positive activity if the final phoneme
is unvoiced, near zero otherwise. These are precisely the features required to
discriminate among the three regular verb classes. In fact, the classification
rule for regular verbs can be observed in the context-output weights (the
rightmost weight matrix in figure 5). Connections are such that output
unit 1, which represents the “add /"d/” class, is activated by a final dental
phoneme; output unit 2, which represents the “add /t/” class, is activated
by a final non-dental unvoiced phoneme; and output unit 3, which represents
“add /d/” class, is activated by a final non-dental voiced phoneme.

Note that the decay weights in this simulation are small in magnitude; the
largest is 0.02. Consequently, context units retain no history of past events,
which is quite sensible because only the final phoneme determines the verb

to context

2

1

366 Michael C. Mozer

i N I:I O |14
23ul [m

oo M] -moog

ext

U
L]
|

o m [D|12.5~D|0.02~ "

[]
O
-

1 2 4 { 1]
wi from input : & zero pt " wt to ;tnpm ?
" | - - o m | -
1 . 2 1
portisipAt _dEfend_ = . _maC_ ? ! _trAn_ *

] H | - - | o , -

. : . L
k~lekt _rEkord_ _p~bliS_ _smll_
| - | O m []
¥ 1

H

1
oksept _ekspand_ * _dEvelop_ _kembIn_ *

~jnst _bInd_ _ekspres_ _verE_

- -H B
O, -

q |
0

|

_BliminAt _ _~tend_ 2 _promis_ Sk

Figure 5: The regular verb problem. The upper half shows learned
weights in the network, the lower half shows the final activity levels of
the context units in response to a variety of verbs. Verbs in the first
column all end with /t/, in the second column with /d/, the third
column with an unvoiced consonant, and the fourth column with a
voiced consonant or vowel.

class. This fact makes verb classification a simple task: it is not necessary
for the context units to hold on to information over time.

Consider now the opposite problem. Suppose the network is given the
same verb classification task, but the order of phonemes is reversed; instead of
/eksplAn/, /nAlpske/ is presented. In this problem, the relevant information
comes at the start of the sequence and must be retained until the sequence is
completed. Figure 6 shows performance on reversed regular verbs, averaged
over fifteen runs. The focused network is able to learn this task, with two
context units, although the number of training epochs required is higher than
for unreversed verbs. Generalization is as good for reversed as unreversed
verbs. The full network, however, does not succeed with reversed verbs. In
exploring a wide range of learning rate parameters, the highest single-run
performance I was able to obtain was 75%. The difference between reversed
and unreversed verbs is that the critical information for classification comes
at the beginning of the sequence for reversed verbs but at the end for unre-

A Focused Backpropagation Algorithm 367

100 —
}focus
——
(6]
[0}
=
o
O
O
—-——
C
(0}
O
C full
()
o
30 1 I 1 I 1 l | I { I 1 I
(0] 250 500 750 1000 1250 1500 gen

Epoch

Figure 6: Mean performance on the reversed regular verb task as a
function of learning epoch for the focused and full recurrent archi-
tectures. The bars indicate one standard error of the mean in each
direction. Data points for generalization performance are shown on
the far right.

versed. In terms of the unfolded architecture of figure 2(b), this corresponds
to a low layer for reversed but a high layer for unreversed. These results
thus suggest that error signals are lost as they propagate back through the
deeply-layered full network. This issue is addressed further in section 12.1.

10. Learning to reproduce a sequence

In this task, the network is presented with a three-element input sequence,
and then, following a fixed delay, must play back the sequence in time. The
training sequences consisted of all permutations of three elements, A, B, and
C, resulting in a total of six sequences: ABC, ACB, BAC, BCA, CAB,
and CBA. An element was encoded by a binary activity pattern; A was
100, B 010, and C 001. The input layer contained three units on which the
sequence was presented, one element per time step. At subsequent times, all
inputs were zero. The order of events for ABC is presented in table 3. In
this example, there is a one time-step delay between the final element of the
input sequence and the start of playback on the output units. Note that the

368 Michael C. Mozer

time step | input | target output
1 100 (A) | 000
2 010 (B) | 000
3 001 (C) | 000
4 000 000
5 000 100 (A)
6 000 010 (B)
7 000 001 (C)

Table 3: Sequence of input and target output patterns for ABC.

target output levels are zero until playback commences.

To help the network keep track of its position during playback, three
additional input units were provided which represented the output at the
previous time step (an architecture suggested by Jordan [19]). During train-
ing, these inputs were set to the target output values; for the example in
table 3, these inputs would be zero from times 1 — 5, 100 at time 6, and 010
at time 7. During testing, the true output values from the previous time
step were “quantized” and copied back to the input. Quantization entailed
setting all output levels greater than 0.5 to 1.0 and others to 0.0.

The network was made up of six input units, three for the current se-
quence element and three for the previous output state, three context units,
and three output units. The task of the context units was to learn a static
representation of the sequence that could be used in regenerating the se-
quence.

Fifteen replications of the simulation were run with random initial weights
for both focused and full network architectures. The focused network had
two-thirds as many connections within the context layer as the full — six
instead of nine.

Performance was judged using the quantized outputs. The task was suc-
cessfully learned on all runs. The mean number of training epochs required
for perfect performance was 767 for the focused network and 620 for the full
network. Although the focused network took a bit longer to learn, this dif-
ference was not statistically reliable (¢(28) = .958,p > .3). Figure 7 shows a
typical weight configuration obtained by the focused network and its response
to ABC.

The sequence reproduction task becomes more difficult to learn as the
delay between input and playback is increased. In the above example, the
delay was one time step. Simulations were also run at a four time-step delay.
Training continued until performance was perfect, up to a maximum of 15000
epochs. The focused network was able to learn the task perfectly on twelve
of fifteen runs, the full network on only two of fifteen. Mean performance
over all runs following training was 98.5% for the focused network, but only
72.9% for the full. This difference was significant (¢(28) = 8.42,p < .001).

A Focused Backpropagation Algorithm 369

i[OO

Jd I B=lsl T [IR
Lm0 - m W]

ontext

frol

sl | |
a1 |
[Je[Jo=-0m ‘W [J HON

3 4,] 1 2 3
wt from input decay zero pt wt to output

17.1

. Ix.(m - =] |} ILOG . . . |o.an . '1.00
| o - m| H = B
| " E - e]
| o - o] - I
& | O o l
] | = [O " |
B 00 .| =

B 4 s 1 2 1 2
input context output target

ABC

Figure 7: The sequence reproduction problem. The upper half of the
figure shows learned weights in the focused network, the lower half
shows input, context, output, and target activity over time for the
sequence ABC. The sequence-to-be-reproduced is encoded on input
units 1-3; the quantized output from the previous time step is encoded
on input units 4-6.

Increasing the playback delay increases the time lag between the critical
input information and the start of the response. The full network appears
able to learn only when the critical input shortly precedes the response,
whereas the focused network is able to learn with extended time lags. This
conclusion was also suggested by the regular verb results.

11. Large verb simulation

To study a more difficult task, the verb categorization problem of section 9
was extended to a larger corpus of verbs. As before, the task was to classify
each verb according to the manner in which its past tense is formed. The
complexity of the task was increased by including both regular and irregular
verbs, 136 training instances altogether, and a total of thirteen response
categories — three for regular forms and ten for irregular. The response
categories and number of training instances in each category are listed in

l
|
|
|
l

370 Michael C. Mozer

Category | Instances Examples Category (how past
number | in category tense is formed)
1 20 explain (explained) | regular verb, add /d/
cry (cried)
2 20 dance (danced) regular verb, add /t/
pack (packed)
3 20 reflect (reflected) | regular verb, add /"d/
guide (guided)
4 7 beat (beat) no change
put (put)
5 3 send (sent) change a final /d/ to /t/
build (built)
6 8 deal (dealt) internal vowel change
mean (meant) and add a final /t/
it 6 do (did) internal vowel change
sell (sold) and add a final /d/
8 5 bring (brought) internal vowel change,
teach (taught) delete final consonant,
and add a final /t/
9 5 have (had) internal vowel change,
make (made) delete final consonant,
and add a final /d/
10 4 swim (swam) internal vowel change
ring (rang) of /i/ to /a/
11 17 feed (fed) internal vowel change
get (got) and stem ends in a
dental
12 20 begin (begun) other internal vowel
break (broke) change
13 1 go (went) go in a category by
itself

Table 4: Verb classification.

table 4. The categories are based loosely on a set suggested by Bybee and
Slobin [28].

The corpus of verbs was borrowed from a psychological model of Rumel-
hart and McClelland [1] designed to account for children’s acquisition of verb
past tenses. This model would produce the past tense of a verb given its in-
finitive form as input. The representation used at both input and output
ends is a Wickelelement encoding of the verb, each Wickelement encoding a
particular phonetic feature in the context of two neighboring phonetic fea-
tures. Because this static representation is built into the model, the model
did not require temporal dynamics. My interest in studying this problem
was to see whether the focused recurrent network could, given time-varying
inputs, learn something like the Wickelement representation presupposed by

A Focused Backpropagation Algorithm 371

Rumelhart and McClelland’s model. The focused network seems ideal for
the task because its architecture is tailored to learning Wickelement repre-
sentations.

The task is difficult. The verb classes contain some internal regularities,
but these regularities are too weak to be used to uniquely classify a verb.
For instance, all verbs in category 3 end in a /d/ or /t/, but so do verbs
in categories 4, 5, and 11. Whether a verb ending in /d/ or /t/ belongs in
category 3 or one of the other categories depends on whether it is regular,
but there are no simple features signaling this fact. Further, fine discrimi-
nations are necessary because two outwardly similar verbs can be classified
into different categories. Swim and sing belong to category 10, but swing to
category 12; ring belongs to category 10, but bring to category 8; set belongs
to category 4, but get to category 11. Finally, the task is difficult because
some verbs belong in multiple response categories; for example, sit could go
in either category 10 or 11. The lowest category number was chosen in these
cases.

Because the category to which a verb belongs is somewhat arbitrary, the
network must memorize a large number of special cases. (Indeed, an earlier
version of these simulations were run in which the target responses were
incorrect for about 15% of the items. The network learned the task just as
well, if not a bit faster than in the simulations reported below.)

The network architecture was similar to that used in the regular verb
example. The input layer was a two-phoneme buffer, and the encoding of
phonemes was the same as before. The output layer consisted of thirteen
units, one for each verb class. Both focused and full network architectures
were simulated. To match the two networks on number of connections, 25
context units were used in the focused network, 16 in the full; this resulted
in 613 weights for the focused network and 621 for the full network.

Figure 8 shows performance on the training set for the two architec-
tures, averaged over ten runs with different initial random weights. A verb
is considered to have been categorized correctly if the most active output
unit specifies the verb’s class. Both focused and full networks are able to
learn the task, although the full network learns somewhat more quickly. Er-
rors observed during training seemed quite reasonable. Verbs are sometimes
“overregularized,” as when eat becomes eated. Overgeneralization occurs in
other respects, as when sit was misclassified in category 4 — verbs whose
past tense is the same as the root — presumably by analogy to hit and fit
and set. Surprisingly, neither the full nor focused net had difficulty learning
category 13, although it contained only a single verb — go.

Generalization performance on novel sequences is poor for both networks
(data points on far right of figure 8), but this is readily explained. The cor-
pus provided by Rumelhart and McClelland had 420 verbs altogether. To
normalize across categories, at most twenty verbs from each category were
used in the training set. Consequently, the regular verb classes were approx-
imately the same size as the irregular classes, eliminating any a priori bias
toward classifying an unfamiliar verb as regular. The verbs from the corpus

372 Michael C. Mozer

100 — full

90—
80 —

- focus
70 —

50’—

Percent Correct

50 — focus
1 full

40 —

30 Il ! l |] | |
0 250 500 750 1000 gen

Epoch

Figure 8: Mean performance on the large verb problem as a function
of learning epoch for the focused and full recurrent architectures. The
bars indicate one standard error of the mean in each direction. Data
points for generalization performance are shown on the far right.

not used in training were used for generalization testing; these verbs were
almost exclusively from the three regular verb categories. Thus, the network
attempted to classify the unfamiliar regular verbs without any expectation
that the verbs would be regular. Most all errors involved mistaking the verbs
to be irregular.

Typical weights learned by the focused network are presented in figure 9,
along with activity in the network in response to two sequences, _riN_ (ring)
and _briN_ (bring). These similar input patterns produce different outputs:
riN belongs in category 10 and _brilN_ in category 8. One can easily
expend a great deal of effort trying to interpret the behavior of individual
context units and how they serve to distinguish two inputs like _riN_ and
brilN. I leave this as an exercise for the reader.

12. Evaluation of the focused architecture

The simulations reported above are typical of results I have obtained with the
full and focused architectures. For both architectures, learning becomes more
difficult as the delay between the critical input and the response is increased.
This was observed in two simulations: the regular verbs and the sequence

A Focused Backpropagation Algorithm 373

B . v W W & ¢ s BAY @ agpe §° 3 HE - t 1 Lpe
- ® " @ ® 0o - 8 Ig . 8 - @ @\ o s =
T « m ¢ ®m @ = " a 8. . - e e - 8 o .
s - = O e p O = L % g #a e . « = = P
=} a L) L o - - - & L=} & w - - 9 .
. = 5 o s« - 8 @ s ag 8. o s D o e n
- o o ® e s O - 8 "0 ® s o + « 0 ®m [
LI g s o + 0O = od 2 o ®a . ® . - o -
. . = - = @ + = e aE L) - « = @ a e
%y s - * ® s @ =8 0 : : 3:: ° « F'm s @ L 2 .
208 - = s3] s 5 i + @2t o @ .
Se « = o W s = @O = » =] o8 4 . = = e« ® o > B
o¥ - =m o = ® = 0O - o * g g¥o = «+ s s O o 8 -
O: . . . - - . - - ; :ﬂ og ° o . o C 3 - - - L]
- - o L] a o b . - o - - - . o o L - . |] . .
-8 . o =« ® @ O - - P « o = - . - o =
T I : .§] 5 5 « % « o 8 = °
~a - = 0 s s - = - ~ S - ¢ W e 8 ®w o ® .+ .
-0 o s g o+ s = = - -Q P « T = .+« o o m s
a0 8 + O O = ®B ® = - -0 - =« D « = ®m & « QO = -
-0 = . o a o 1] . - - -0 - . - - o - - L] - 0 - .
~0 O = . = o O = = - -~ 0 “~ s = - o o = - = = ®W
«a s o+ m @ . @ - -» - -Q -8 . «+ +« = - o8 ® B s
“io: 03 %O%.0% 0% 3 oA - =4 ™5 8 5% 9% 8 6 e h %W
wt from input =opl wt to output
L] | H200 +pDOMOO-=-cssms@800O0=-B-@80145 -+ ----a-@--]100 |] 11.00
" = oam | »00BOCEE s smEEes@0000 - s =B @ - . -m-mE ¢ |
ssm W = OcOEQc-E0-B=@-AECO0- - ®-s:(s .- -@e-sHl- | |
Huam | OsosposssosEsssssQooOs0=sgl B --=-m-ul- |]
11345472 12343538789 MNTUNEHTENRNDDNY Y1347 0y M 1231435878 s Y
input context output arg
'N
(]] H200 sQOBoOsss0s-B-8sJs+-Ha@Ol44 - -oc Hewsa:09 | | 11.00
" = =@ | sOosp0Os@ocs@els -@O0=0emc@0 ‘m +-m W-s®E | |
msn B u| cpgesOo«B0CHE-Scamp0OEcesoB@] g --mw B--R--| |
smm | +s-. psmEQ-W--s.s0o-08 20| @ - @ He-e-H- - |
| | omsOosss0EMOOSoO0+0CCORRoEg o memcn-sHeo| |
1213454878 123438789 MUBUKERTNBRNTINNY 1234887 s MY 12343870 NN
input context output target

briN

Figure 9: The large verb task. The upper portion of the figure shows
learned weights in the focused network, the lower portion shows input,
context, output, and target activity over time for the sequences _riN_
(ring) and _briN_ (bring).

374 Michael C. Mozer

reproduction task. While this difficulty is manifested in slowed learning
for the focused architecture, its effect on the full architecture is far more
devastating. The full architecture is simply unable to learn tasks that involve
long intervals between critical input and response. Not all tasks are of this
nature, however. For tasks in which the information contained in the input
is more evenly distributed across time, e.g., the large verb simulation, the
full network appears to learn in fewer training cycles when full and focused
networks are matched on total number of connections.

Nonetheless, the focused architecture is a clear win on at least two grounds.
First, the focused architecture does not require each unit to maintain a stack
of its intermediate activity levels. Thus, not only is it less memory intensive,
but it has far greater plausibility as a true neural model. Second, learning
in the focused architecture is less computation intensive because backprop-
agation of the error signal in time is eliminated. The focused architecture
requires about two-thirds as many floating point operations per training cy-
cle as the full. This savings is achieved whether the network is implemented
in serial or parallel hardware.

12.1 Scaling properties

A critical question to be asked of any network architecture is how well its
performance will scale as the problem size increases. The focused architec-
ture promises to scale better than the full architecture with respect to the
sequence length. The reasoning is as follows. As I discussed previously, any
recurrent architecture (e.g., figure 2(a)) can be unfolded in time to obtain a
computationally-equivalent feedforward network (figure 2(b)). The depth of
this unfolded network increases with sequence length. However, an unfolded
version of the focused architecture can be constructed with a fixed depth and
a breadth that increases with sequence length (figure 10). The input units
and context units are replicated for each time step of the sequence. Each set
of context units is activated solely by the input at the corresponding time
step. In the third layer of the network, the net activity of context unit ¢ is
computed by taking a weighted sum of unit ¢s activity at each time 7 from
7 = 1---t. This simple summation is possible because the integration of
context unit activity over time is linear. That is, the context unit activation
equation

ci(t) = dici(t — 1) + s[net;(¢)] (12.1)

can be rewritten in closed form as
t
ci(t) =Y di " s[net(7)].
=1

Each set of units in the second layer of figure 10 computes s net;(7)]. The
third layer then sums the s[net;(7)] across 7, weighted by the decay factor
d™", to obtain ¢;(t).

A Focused Backpropagation Algorithm

OUTPUT(t)

i

L

/7_\

CONTEXT (t)

T

CONTEXT (1) CONTEXT (2)
INPUT(1) INPUT(2)

INPUT (t)

375

Figure 10: An unfolded version of the focused architecture having four
layers. Input and context units are replicated for each time step of
the input sequence. The activity of each context unit is summed over
time in the third layer, weighted by a time-dependent decay factor.

Consider the situation when all d; are near 1.0, as they are set at the
start of a simulation. Information from all times will be integrated with
equal weight; no matter when in time an input appears, it will be treated
uniformly. If the desired response of the network depends on a critical in-
put at a particular time, it will not matter when in time this input occurs.
Further, increasing the length of a sequence serves only to add background
noise against which the critical input must be detected.*

To recap, longer sequences translate to a greater effective depth of the
full architecture, but a greater effective breadth of the focused architecture.
As I argued in section 2, one has reason to suspect that deep and narrow
networks are more troublesome for backpropagation than shallow and wide
ones. If so, the focused network should scale better with respect to sequence
length.

Indeed, comparisons of the full and focused architectures reported above
can be interpreted as support for this claim. Consider the regular verb ex-
ample. When the verbs are presented unreversed, only the final sequence
element is critical for classification. Thus, although the unfolded full net-
work may have as many layers as sequence elements, the effective depth to
which the network must attend is quite shallow. Reversing the verbs increases
the effective depth. The comparison of unreversed and reversed verbs in the

“Note that if the decay terms become much less or greater than 1.0, there becomes a
bias toward recent or distant information, respectively. It is thus important to start the
system with initial decay terms near 1.0 and to change them slowly.

376 Michael C. Mozer

full network is therefore a test of scaling as the effective depth increases; the
same comparison in the focused network is a test of scaling as the effective
breadth increases. In this case, greater depth is clearly more detrimental
than greater breadth.

The focused and full networks differ along two dimensions. The focused
network has 1 — 1 connections in the context layer and the context unit
activation function is linear; the full network has complete connectivity in
the context layer and a nonlinear context unit integration function (one in
which the recurrent connections are contained within the squashing function).
The depth-versus-breadth result is contingent on linear integration, not on
1 — 1 connections within the context layer. As was mentioned previously,
Bachrach [27], Yoshiro Miyata, and I have examined a third architecture —
one with 1 —1 connections and nonlinear integration. This architecture does
not seem to perform well, as one might predict on the basis of the nonlinear
integration function. Note that we have not explored a fourth and potentially
promising architecture, one with complete connectivity in the context layer
and a linear integration function.

13. Problems with the approach

Despite reasonable success with the focused architecture, some difficulties
should be pointed out. First, instability problems arise if the decay values
become larger than 1.0 because such values allow a unit’s activity to grow
exponentially over time. In practice, this is not a serious problem as long as
learning rates for the decay connections are kept small. Nonetheless, the final
activity levels of the context units can become ridiculously large, particularly
on generalization testing if the novel patterns are longer than the training
patterns. For example, in the reversed regular verb problem, generalization
testing occasionally produced context unit activity levels above 25. One
possible solution is to constrain the allowed values of the decay connections.
I have tried restricting the allowed values to the interval 0 —1. Generally, this
restriction increases the number of learning trials required, but does improve
stability and generalization performance.

A second criticism of the focused architecture is that it uses an input
buffer. This buffer was motivated by the desire to train context units to
respond to Wickelements, but is not strictly necessary. For most problems I
studied, the network could learn without a buffer provided sufficient training
and additional context units. However, without a buffer, the context units
are unable to obtain nonlinear interactions across time. For instance, a sin-
gle unit cannot be tuned to respond sharply to input A followed by input
B but not to either A or B in isolation. No matter, the buffer used in the
focused architecture is altogether different from that required by the naive
buffer model presented in section 1. The buffer in the buffer model specifies
a temporal window over which information integration can occur, whereas
the focused architecture’s buffer specifies a temporal window over which non-
linear interactions can occur. The focused architecture will almost certainly

A Focused Backpropagation Algorithm 377

not need as large a buffer as the buffer model.

A final difficulty with the focused architecture is that, while it may be
appropriate for relatively short sequences, it is unclear how well the approach
will work on long sequences in which very little information is contained in
a single sequence element, e.g., a speech recognition task with the time-
domain waveform as input. Of course, this sort of problem is difficult for the
full architecture as well. One solution is to extend the buffer size to capture
significant segments of the input. It would seem a more promising solution,
however, to preprocess the input in some manner, perhaps using unsupervised
learning mechanisms, to obtain higher-order features which could then be fed
into the recognition system.

14. Acknowledgments

Thanks to Jeff Elman, Yoshiro Miyata, and Geoff Hinton for their insightful
comments and assistance. The graphical displays of network states would
not have been possible without Yoshiro’s code. Dave Rumelhart and Jay
McClelland were kind enough to provide me with the phonological encoding
and classification of verbs from their simulation work.

This research was supported by Grant 87-2-36 from the Alfred P. Sloan
Foundation to Geoffrey Hinton, Contracts N00014-85-K-0450, NR 667-548,
and N00014-85-K-0076 with the Office of Naval Research, a grant from the
System Development Foundation to Donald A. Norman and David E. Rumel-
hart, and an IBM Graduate Fellowship.

Appendix A. Derivation of the focused back propagation
algorithm

Assume the following situation: a ¢ time step sequence has been presented
and at time ¢ a desired output is specified that allows for the computation
of an error signal. The problem is to determine two quantities: the error
gradient with respect to the recurrent connections (0£/dd;) and with respect
to the input-context connections (F/0w;;).

Beginning with the recurrent connections, the chain rule can be used to
expand 0E/0d;:

0F OE 0Jci(t)

6_d,- (')c,-(t) Bd,

OF[dc;(t) can be computed directly by backpropagating from the output
layer to the context layer at time #. Thus, the problem is to determine

0c;(t)/0d;. Given that
ci(t) = dici(t — 1) + s[net;(¢)] (A1)
and

net;(1) = zk:wk,-mk(T) (A.2)

378 Michael C. Mozer

(rewriting (3.1) from the main text) and assuming the initial condition ¢;(0) =
0, the difference equation (A.1) can be rewritten in closed form as:

ait) = ; dt" s[net;(7)]. (A.3)

Defining

ai(t) = 6;5),

by substituting c;(t) from (A.3) and computing the partial derivative, we
obtain

a i

I3 di7slnety(7)]

T r=1

;(t — r)di " sfnety(7)] (A4)

a;(t)

Regrouping the terms,

t—1 k

Zde"T s[net;(7)]

=1 1=1

2 gt Z d¥~" s[net;(7)). (A.5)

=1

Combining (A.3) and (A.5),

o(t)

ailt) = kZ)

Removing the &k = ¢ — 1 term from the summation and factoring out d;, we
obtain:

a,-(t) = C,‘(t == 1) + d,' tX_f dz_k_zc,'(k). (AG)
k=1

From (A.4), the summation in (A.6) can be replaced by o;(¢t —1) to yield the
incremental expression:

Ol,'(t) = C,‘(t = 1) + d,-a,-(t = 1)
Following a similar derivation for the input-context connections, we can ex-
pand OE/dwj;:

0E 0E 0c(t)

OUin N ac,;(t) awj,'
As stated above, 0E/dc;(t) can be computed directly by backpropagating
from the output layer to the context layer at time ¢. Thus, the problem is to

A Focused Backpropagation Algorithm 379

determine Oc;(t)/Owj;. Defining

Bii(t) = %c;u(t),

by substituting ¢;(t) from (A.3) and computing the partial derivative, we
obtain

Bii(t) = 35)[2 d " s[net(7)]].

% =1

Using (A.2) to compute the derivative of s[net;(7)],

t

Bii(t) = > di7"s'[nety(r)]z;(r). (A7)

=1

Removing the 7 = ¢ term from the summation and factoring out d;, we
obtain:

B;i(t) = s'[net;(t)]z;(2) + d; ti_; di77 s [net; (7)) z; (7). (A.8)

From (A.7), the summation in (A.8) can be replaced by f;;i(¢ — 1) to yield
the incremental expression:

Bji(t) = '[net;(t)]z;(¢t) + difsi(t — 1).

References

[1] D.E. Rumelhart and J.L. McClelland, “On learning the past tenses of English
verbs,” in Parallel distributed processing: Explorations in the microstructure
of cognition. Vol. II: Psychological and biological models, J.L. McClelland
and D.E. Rumelhart, eds., (MIT Press/Bradford Books, Cambridge, 1986)
216-271.

[2] T.J. Sejnowski and C.R. Rosenberg, “Parallel networks that learn to pro-
nounce English text,” Complex Systems, 1 (1987) 145-168.

[3] G. Hinton, “Learning distributed representations of concepts,” Proceedings
of the Eighth Annual Conference of the Cognitive Science Society, Hillsdale,
NJ (1987) 1-12.

[4] P. Smolensky, “Schema selection and stochastic inference in modular envi-
ronments,” Proceedings of the Sixth Annual Conference on Artificial Intel-
ligence AAAI-83 (1983) 109-113.

[5] J. Freyd, “Dynamic mental representations,” Psychological Review, 94
(1987) 427-438.

[6] J.L. Elman and J.L. McClelland, “Exploiting lawful variability in the speech
wave,” in Invariance and variability in speech processes, J.S. Perkell and
D.H. Klatt, eds. (Erlbaum Associates, Hillsdale, NJ, 1986) 360-380.

380

(7]

(8]

[10]

(11]

[12]

[13]

[14]

(15]

[19]

Michael C. Mozer

J.L. Elman and D. Zipser, “Learning the hidden structure of speech,” Journal
of the Acoustical Society of America, in press.

T.K. Landauer, C.A. Kamm, and S. Singahal “Teaching a minimally struc-
tured back propagation network to recognize speech,” Proceedings of the
Ninth Annual Conference of the Cognitive Science Society, Hillsdale, NJ
(1987) 531-536.

A. Lapedes and R. Farber, “Nonlinear signal processing using neural net-
works,” Report No. LA-UR-87-2662, Los Alamos, NM (1987).

J.L. McClelland and J.L. Elman, “Interactive processes in speech perception:
The TRACE model,” Parallel distributed processing: Explorations in the
microstructure of cognition. Vol. II: Psychological and biological models,
J.L. McClelland and D.E. Rumelhart, eds. (MIT Press, Cambridge, 1986)
58-121.

D.C. Plaut, S. Nowlan, and G.E. Hinton, “Experiments on learning by back
propagation,” Technical Report CMU, Carnegie-Mellon University, Depart-
ment of Computer Science, Pittsburgh, PA (1986).

D. Tank and J. Hopfield, Proceedings of the National Academy of Sciences,
84 (1987) 1896.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, “Phoneme
recognition using time-delay neural networks,” Technical Report 1-0006,
ATR Interpreting Telephony Research Labs, Japan (1987).

G. Hinton, “Connectionist learning procedures,” Artificial Intelligence
(1988) in press.

K. Lang, “Connectionist speech recognition,” Unpublished Ph.D. thesis pro-
posal, Carnegie-Mellon University, Pittsburgh, PA (1987).

J.L. Elman, “Finding structure in time,” CRL Technical Report 8801, Uni-
versity of California, San Diego, Center for Research in Language (1988).

W.S. Stornetta, T. Hogg, and B.A. Huberman, “A dynamical approach to
temporal pattern processing,” Proceedings of the IEEE Conference on Neu-
ral Information Processing Systems, Denver, CO (1987).

R.L. Watrous and L. Shastri, “Learning acoustic features from speech data
using connectionist networks,” Proceedings of the Ninth Annual Conference
of the Cognitive Science Society, Hillsdale, NJ (1987) 518-530.

M.I. Jordan, “Attractor dynamics and parallelism in a connectionist sequen-
tial machine,” Proceedings of the Eighth Annual Conference of the Cognitive
Science Society, Hillsdale, NJ (1987) 531-546.

A Focused Backpropagation Algorithm 381

20]

(21]

(22]

23]

(24]

25]

26]

(27]

28]

(29]
(30]

(31]

32]

D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning internal rep-
resentations by error propagation,” Parallel distributed processing: Explo-
rations in the microstructure of cognition. Vol I: Foundations, D.E. Rumel-
hart and J.L. McClelland, eds. (MIT Press/Bradford Books, Cambridge,
1986) 318-362.

L. Almeida, “A learning rule for asynchronous perceptrons with feedback in
a combinatorial environment,” IEEE First Annual International Conference
on Neural Networks, San Diego, CA (1987).

F. Pineda, “Generalization of back propagation to recurrent neural net-
works,” Memo S1A-63-87, Johns Hopkins University, Applied Physics Lab-
oratory, Laurel, MD (1987).

W. Wickelgren, “Context-sensitive coding, associative memory, and serial
order in (speech) behavior,” Psychological Review, 76 (1969) 1-15.

M.C. Mozer, “Early parallel processing in reading: A connectionist ap-
proach,” Attention and performance XII: The psychology of reading,
M. Coltheart, ed. (Erlbaum, Hillsdale, NJ, 1987) 83-104.

M.C. Mozer, “The perception of multiple objects: A parallel, distributed
processing approach,” ICS Technical Report 8803, University of California,
San Diego, Institute for Cognitive Science (1988).

Y. Miyata, “The learning and planning of actions,” ICS Technical Report
8802, University of California, San Diego, Institute for Cognitive Science, La
Jolla (1988).

J. Bachrach, “Learning to represent state,” Unpublished master’s thesis,
University of Massachusetts, Amherst (1988).

J.L. Bybee and D.I. Slobin, “Rules and schemas in the development and use
of the English past tense,” Language, 58 (1982) 265-289.

Steven Nowlan, personal communication.

R.J. Williams and D. Zipser, “Experimental analysis of the real-time recur-
rent learning algorithm,” Connection Science, 1 (in press).

M. Gori, Y. Bengio, and R. Mori, “BPS: A learning algorithm for capturing
the dynamic nature of speech,” Proceedings of the First International Joint
Conference on Neural Networks, 2 (1989) 417-423.

Yoshiro Miyata, personal communication.

