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Abstract. Time is at th e heart of many pat tern recognition t asks,
e.g., speech recognit ion . However, connectionis t learning algorithms
to date are not well suited for dealing with tim e-varying input pat­
terns. This paper introduces a specialized connectionist architecture
and corre sponding specialization of the backpropagation learnin g al­
gori thm th at opera tes efficiently on temporal sequences . The key fea­
ture of t he archit ecture is a layer of self-connecte d hidden units that
integrate their curre nt value with th e new input at each time ste p
to construct a static represent ation of the temporal input sequence .
Thi s architecture avoids two deficiencies found in other models of se­
quence recognition: first , i t reduces the difficulty of temporal credit
assignm ent by focusing th e backpropagated err or signal; second, it
eliminates the need for a buffer to hold th e input sequence and/or in­
termediat e activity levels. The lat ter prop erty is due to the fact th at
during th e forward (activation) phase, incremental activity tra ces can
be locally compute d that hold all information necessar y for backprop­
agation in time . It is argued tha t thi s architecture should scale better
t han conventional recurrent architectures wit h respect to sequenc e
length . The architecture has been used to implement a temporal ver­
sion of Rumelhart and McClelland's verb past-tense model [1]. The
hidden units learn to beh ave something like Rumelhart and McClel­
land 's "Wickelphones," a rich and flexibl e representation of temporal
information.

1. Introduction

Connectionist models have proven su ccessful in a variety of pattern recogni­
tion tasks (e.g. , [2 ,3]). In some respects, t hese models are amazingly powerfu l
- more so than the human brain. For instance, take an image com posed of
light intensities and randomly rearrange pi xels in t he image. Most connec­
ti onist archit ect ure s can learn to recognize the permuted image as readily as
the original [4J, whereas humans would no doubt h ave gr ea t difficulty with
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Figure 1: Abstract characterization of the temporal patt ern recogni­
tion task. X(t ) indicates the input pattern at time t, OCt ) the outpu t
pattern .

this task. In other respects, however , the pattern recogni tion abilit ies of
connectionist models are quite primit ive. While humans have little t rouble
process ing temporal patterns - indeed, all input to the sensory syste ms is
int rinsically temporal in nature - few connect ionist models deal wit h time.
Because t ime is at the essence of many pattern recognition t asks, it is im­
portant to develop better methods of incorporating t ime into connect ioni st
networks.

Fig ure 1 depicts an ab stract chara cterizat ion of the t emporal pattern
recognition t ask . Time is quantized into discrete steps . A sequence of inputs
is presented to t he recognition system , one per time step. Each element of
the sequence is represented as a vector of feature values. At each point in
time, the system may be required to produce a resp onse, also represented as
a vector of feature values, cont ingent on the input sequence to that po int.
In the simplest case, shown in figur e 1, a response is req uired only afte r the
entire input sequence has been pr esented .

Many important pr oblems are of this class . For ins t ance, recogniz ing
speech involves sampling the acoust ic signal at regul ar intervals and produc­
ing as output a representation of phonemes or words or phrases. Similarly,
natural language pr ocessing consists of analyzing a sequence of words to yield
a st ruc tural or semant ic description. Event percep tion can be viewed as an­
alyzing a sequence of snapshots of the visual world to produce a description
of the ens uing event. Freyd [5] has argued that even for som e st atic ob­
jects, perception may be dynamic in the sense that a temporal dimens ion is
incorporated into the pe rceptual analysis.

2. Previous connectionist approaches to temporal patter n
r ecognit ion

One popular approach to tempora l pattern recognit ion has been to const ruct
a buffer to hold the n most recent elements of the input sequence [6- 13]. Such
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a buffer can be implemented using a shift register or delay lines. The buffer
turn s a temporal recogni tion problem into a spatial recognit ion problem in
which all relevan t information for making a response is simult an eou sly avail­
able. Because connectionist models are relatively good at spatial recognition
problems, this approach seems assured of some success.

However, the approach has four serious drawbacks . First, the buffer must
be sufficient in size to accommodate the longest possible inp ut sequence .
W ith an n-element buffer, no sequence of duration greate r than n can be
recognized. Thus, the longest possible sequence - the longest int er val over
which context may play a role - must be known in advance. Even if a fairly
lar ge buffer can be built, say one sufficient to recognize a phoneme or demi­
syllable, what ab out higher levels of analysis - words , phrases, sentences,
paragraphs? At some point , one needs to deal wit h the fact that not all input
information can be availab le to the system simultaneously. A hierarchy of
bu ffers may partially alleviate this problem, but will still require the advance
specification of maximum sequence dur ation .

A second drawback of using a buffer is that by making a great deal of
information simultan eously available, much computation is required at each
time step. Esse ntially, all informati on within the buffer must be reprocessed
whenever the buffer state changes. This is not a problem if one has dedicated
parallel hardware, but simulat ions of such a connectionist syst em on a serial
machine can be computat ionally expensive.

T hird, when a buffer is used as input to a connectionist network, each
element of the buffer must be connected to higher layers of the net work.
Consequently, as the buffer grows, so does the number of weights. This means
t hat a larg e number of t raining examples must be used or else the net work
will not generalize well [14]. Alternatively, the weights must be cons trained
in some manner so as to reduce the number of free paramet ers [13,15].

Fourth, the use of a buffer makes it difficult to achi eve invari ance under
t ranslation in time . Becau se the buffer turns shifts in time into shifts in space
(i.e., buffer positi on), the representation of an input sequence occurring at
one time will have little resemblance to that of an input sequence occurring at
another time. Consequently, if training and test sequences are mis aligned , th e
sequences will likely not be recognized as the same. One way of minimizing
this problem is to shift inputs continuously across the buffer to ensure that
each sequ ence is presented in each positi on , both duri ng training an d testing.
However , this solution introdu ces noise into the training phase and additional
computation into the testing phase.

T hese deficiencies of the buffer mo del argue that the spatial metaphor for
time is not viable; a richer , more flexible representat ion of time is needed.
Similar arguments have been raised elsewhere [16-18]. Despite its drawbacks,
the buffer model has two properties in common with any model of temporal
pattern recognit ion. Fi rst, some memory of the input history is required .
Second , a function mu st be specified to combine the current memory (or
temporal context) and the current input to form a new temporal context :

C(t +1) = ! (C (t),X(t)),
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where C(t ) is a vector representing the context at t ime t , X (t ) the input at
time t, and f the mapping function. The buffer mo del is a simple scheme ,
where the temporal context consis t s of the n most rece nt sequ ence elements,
and f is implemented by the shift- registe r operat ion of the buffer. Given the
inadequacy of the buffer model, one would like to discover ways of represent­
ing temporal context that avoid turning intrinsically temporal information
into spatial information.

One idea is based on the fact that, in a connectionist network, the con­
nections from one set of un its to another imp lement a mapping . T hus, by
representing the input X(t) and context C(t ) as pattern s of activit y on two
set s of units, the weight s connec ti ng the input uni ts to the conte xt uni ts and
t he context unit s to themselves speci fy a mapping function f. Jordan [19]
and Sto rnetta, Hogg , and Hub erman [17] have explored this approach us­
ing fixed weights that do not change with experience. In the Stornetta et
al. work, there is one context unit per input unit, and each context uni t is
connected to itself and its corresponding input unit. In other words, the
mapping funct ion is

where k1 and k2 are fixed constants.
This type of network has no spatial representation of time. Consequently,

the archite cture does not require repli cated inp ut units, in contrast to the
buffer model which requires n copies of the input units for an n-element
buffer. Further, this architecture does not place a rigid upp er bound on the
amount of temporal context that can be considered, whereas the buffer model
can remember only the n most recent sequ ence element s. Nonetheless , this
approach is rather inflexib le in that the mapping function used to cons truct
the temporal context is predete rmined and fixed. As a res ult, the represe nta­
tion of temporal context must be sufficiently rich that it can accommodate a
wide variety of tasks; it cannot afford to discard too much information . The
alternative to this general, task-independent rep resentation is one suited to
the particular task being performed, wherein only the inp ut informat ion rel­
evant to the task need be retained.

Con nectionist learning algorithms provide a mean s of ada pti vely con­
structing intern al representat ions. However, the most promisi ng and po pu­
lar algorithm , backpropagation [20], is designed for feedforward net work s. In
order to represent temporal context, recurrent networks are required because
the current context must depend on the prev ious . Backpropagation can be
used to train recurrent networks if the network is "un folded in time" [20].
The basic trick can be seen by comparing the recu rrent ne twork in figur e 2a
to the equivalent un folded network in figure 2b. The network in figur e 2a
consists of four layers: input , context, hidden , and output . The input pattern
is integrated with the current context to form a new context. The contex t is
then mapped, by way of the hidden layer , to an output . In figure 2b, the same
functionality is achieved by replicat ing the input and context layers for each
element of the input sequence and by constraining the weights such that the
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input-to-context connections and context-to-context connections are equal
across time. Rather than having four pools of units , the unfolded network
contains 2+2t pools, where t is the number of elements in the input sequence.
Because the unfolded network is feedforward, the backpropagation algorithm
can be applied to adjust the connection strengths so that a given input se­
quence will yield a target output.' The weight constraints are enforced by
maintaining only one set of input-to-context and context-to-context weights.
During the backpropagation phase, the changes prescribed for each weight
at each level are summed together to give a net weight change.

Training a network using the unfo lding procedure has two significant
drawbacks. First, part of the architecture must be replicated for each time
step of the input sequence. In implementing the unfolding procedure, it is not
actually necessary to replicate processing units; units need be instanti at ed
only once if each unit remembers its activity level at each point in time ­
i.e., maintains a stack of activity levels. During forward propagation, values
are pushed on to this stack, and during backpropagation, values are popped
in reverse temporal order.?

Second, the unfolding procedure creates a deeply layered network through
which error signals must be propagated. This is bad not only because the
time to perform backpropagation is proportional to the depth of the network,
but also because the further back an error signal is propagated, the more
dispersed it becomes. To explain what I mean by "dispersed," consider
that the purpose of backpropagation is to assign blame to each unit for its
contribution to the error. However, the assignment of blame to a given unit
is meaningful only in the context of the response properties of units higher
in the network. If the present responses of these units do not resemble their
eventual responses, then the lower-layer unit cannot obtain an independently
informative measure of its contribution to the error; backpropagation through
the upper layers will effectively redistribute the error signal in some random
fashion. Thus, in deep networks, especially where the relevant input signal is
found in the lower layers, learning can be very slow. This argument is born
out by empirical comparisons of learning speed using temporal versus spatial
patterns made by myself and by Steven Nowlan [29].

3 . Constraints on network architecture

Given the inherent difficulties in using backpropagation to train a recur­
rent network to recognize temporal sequences, one useful tack is to look for
constraints on solutions the network might discover that could simplify the

1Intermediate output values could readily be trained by replicating the hidden and
output units at intermediate t ime steps and injecting an additional error signal into the
network via the output units.

2Almeida [20] and Pineda [21] have proposed a variation of the backpropagation algo­
rithm for recurrent networks that does not need an activity-level history. However , the
algorithm assumes a fixed input; hence, it is suitable for pattern completion and other
relaxation problems, not for analyzing a time-varying input pattern .
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Figure 2: (a) A four-layered recurrent network consist ing of inp ut,
context, hidden, and output units. Each labeled box indi cat es a set of
processing units. The arrows indic at e complete connectivity from one
layer to another. (b) The same network unfolded in time . Th e input
and context layers are replicat ed for each element of the sequence.
The weights are constrained so that the inp ut -context connections
are equal across time , as are th e context-context connection s.
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learning problem. This strategy of building a priori kno wledge into the net­
work directly can often sp eed learning and improve generalization [14J.

Consider the sort of representation one might like to obtain in the context
layer of the network in figure 2a. This representation should satisfy fou r
criteria. First, it must be a static encoding of the temporal input pattern,
one that holds on to whichever features of the input are needed to produce
the desired response. Second, it must be capable of encoding sequences of
varying lengths with a fixed number of units. Third, it must be capabl e of
encoding relationships between events. Fourth, it should pr ovide a natural
basis for generalization .

Wickelgr en [23J has suggest ed a represent ational scheme that seems to
satisfy these criteria and has been applied successfully in several connection­
ist models [1,24-26] . The basic idea is to encode each element of a sequence
with respect to its local cont ext . For example, consider the phonetic encod­
ing of a word . Wi ckelgren proposed context-sensitive phoneme units, each
responding to a particular phoneme in the context of a particular predecessor
and succ essor. I will call these units Wickelphones , aft er the terminology of
Rumelhart and McClelland [1]. If the word explain had the phonetic spelling
/ ekspIAn/ , it would be composed of th e Wickelphones _ek , eks , kSp , sPI,
pIA, lAn, and All- (where the dash indicates a word bound ary) . Assuming
one Wickelphone unit for each possible phoneme triple, activation of a word
would correspond to a distributed pattern of activity over the Wickelphone
units.

With a fixed number of Wickelphone units, it is possible to represent
uniquely arbitrary strings of varying length. This means that t he unordered
set of Wickelphones is sufficient to allow for the unambiguous reconstruc­
tion of the ordered string. There are difficulties if the string contains re­
peated substrings, e.g ., Mississippi, but these difficulti es can be overcome.
The Wickelphone representation can be generalized to arbitrary sequences
by substituting sequence elements for phonemes . In the general case, I call
the context-sen sitive encoding a Wicke1ement representation.

The t rouble with Wickelements is that there are too many of them .
Rumelhart and McClelland reduced the number of Wickelphones by devis­
ing a more compact and dis tributed encoding that depended on features of
phonemes rather than the phonemes themselves. The number of units can
also be reduced on the grounds that not all Wickelements are needed for
every task . For instance, a pk t Wickelphone is unnecessary for representing
English words. Thus, it would be desirable to learn only the task-relevant
Wi ckelements.

How might the network in figure 2a be modified to learn an internal
representation in the context layer that resembled Wickelements? First , to
obtain local context -sensit ive codes, the sequence might be presented in local
"chunks." This can be achieved by turning the input layer into a small buffer ,
so that at time t the input pattern consists of the sequ ence elements at , say,
times t - 2, t - 1, and t . Then , the conte xt units can det ect conjunctions of
sequence elements , or conjunctions of features of sequence elements . Once
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activated by a pattern in the input , the context units should remain on. Thus,
it seems sensible to have self-connected context units, but not to connect each
context unit to each other, sayan activation function like

Ci(t + 1) = diCi(t) + s[neti(t)], (3.1)

where Ci(t) is the activity level of context unit i at time t, d, is a decay weight
associated with the unit, s is a sigmoid squashing function , and neti(t) is the
net input to the unit:

neti(t) = L WjiXj(t),
j

Xj(t) being the activity of input unit j at time t, Wji the connection strength
from input unit j to context unit i . Thus, a context unit adds its current
activity, weighted by the decay factor, to the new input at each time. The
decay factor allows old information to fade over time if d, is less than one .
Such decay connections have proven useful in other work [17-19 ,27].

To summarize, a recurrent network with this architecture, which I call the
focused architecture for reasons that will become clear shortly, differs from
a full recurrent architecture in three respects: (1) the input layer consists
of a small temporal buffer holding several elements of the input sequence,
(2) connectivity in the context layer is restricted to one -to-one recurrent
connect ions, and (3) integration over time in the context layer is linear.

4. The focused backpropagation algorithm

It turns out that the focused architecture has properties that overcome the
two major limitations discussed earlier of a full recurrent architecture. First,
backpropagation is "focused": the error signal does not disperse as it prop­
agates back in time. Second, to adjust the weights , backpropagation in time
- and saving an activity history stack - is unnecessary.

To get an intuition as to why these two facts are true, consider the weight
update procedure when a t-element sequence is presented to a focused recur­
rent network. Following the sequence, at time t, the network is shown a
target output vector. Comparing this vector to the actual output vector
yields an error signal, E . To adjust weights according to the back propaga­
tion gradient-descent procedure, it is necessary to compute

oE
8i(r ) == oCi(r)

for r = 1 .. . t . Ordinarily, this is achieved by backpropagating in time, from
the context layer at time t to t - 1 to t - 2 and so forth . However, from (3.1 )
it is clear that

OCi(r) = di.oCi(r -l)



A Focused Backpropagation Algorithm

Consequently,

357

8E
8i ( r - 1) = 8 ( )Ci r- l

8ci(r) 8E
8 ( ) 8 () =di 8i (r ).cir-1 Ci r

(4.1)

The error sign al, 8i(r) , changes just by a constant multiplicative factor , di,
as it is propagated back in time. Thus, there is a simple relati onship between
the 8i 's at vari ous points in time.

Because of (4.1), what ever error is pr opagated back to the context uni t
at time t stays within that uni t as the error is pas sed fur ther back in ti me, in
contrast to a full recurrent net work where the error is redist rib uted am ong
the context units with each backwards pass due to cross connect ions between
units. Error propagation with this focused architecture is therefore focused
and should not disperse in time - an apparent limitation of the fu ll recurrent
architecture.

Error propagation with the focused archite cture is also superior in a sec­
ond resp ect. Because of the simple relationship described by (4.1) , it is not
necessary to explicitl y backpropagate in time to compute 8i (r ) from 8i (t ). In­
stead, if each connection has associated with it an activity history trace t hat
is increment ally updated during the forward (ac tivat ion) pass, these traces
can be used to exactly achieve the effects of backpropagation in time.

The appendix deri ves formulas for 8E/8di and 8E/8c;(t) in terms of
the activity traces, which yield the followin g weight update rules. For the
recurrent conn ections, d., the rule is

!:!:.di = - c8i(t )CXi(t ),

where CXi (O) = 0 and

CXi(r) = ci(r - 1) + dicxi(r -1 ).

Similarly, the weight update rule for the input-context connections , Wji, is

!:!:.Wji = - c8i(t) (3ji(t) ,

where (3j i(O) = 0 and

(3ji(r) = s' [neti(r )Xj(r )]xj(r ) +di(3ji(r -1) .

These weight update ru les are not just heuristics or approximations; they are
computationally equivalent to performing the backpropagation in time.

5 . Choosing a squashing function for the co n t ex t units

An interesting issu e arises in the choice of a squas hin g function, s[u], for the
context units. If we indeed hope that the cont ext uni ts learn to behave as
Wickelement detectors , we would like the squashing fun ction to have ran ge
0-1 , in order that the response is 0.0 if the input pattern does not match
the Wi ckelement or 1.0 if it does. But to the extent that the unit is not
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Symbol Activity Pattern
A 0 0 0
B 0 0 1
E 0 1 0
D 0 1 1
N 1 0 0
R 1 0 1
- 1 1 0

Table 1: Symbol encoding for the DEAN jDEARjBEARjBEAN prob­
lem.

updates change each unit's fan -in weight vector by a fixed proportion (p,
gene rally .02) of its current magnitude. The parameter w specifies an upper
limit on the step size when '\h becomes extremely small. This ru le produces
learning rates for the decay and zero -po int terms that are about one-tenth
of the ot her learn ing rates; this relatively small step size seems necessary to
ensure stability of the network.

Alt hough I had hoped to devise a ru le for automatically adjusting t he
learni ng rates which was architecture and problem independent, the above
ru le does not satisfy this requirement . The parameters Il-, p, and w had to be
fine t uned for most applications to give optimal performance. However, the
rule did work much better than fixed learn ing rates and other variants that
with which I experimented.

8. Learning Wickelements

St arting with a simple example, the network was trained to identify four
sequences: _DEAR_, _DEAN_, _BEAR_, and _BEAN_. Each symbol
correspo nds to a single sequence element and was represented by a binary
activity pattern over three units (table 1). The input layer was a two-e lement
buffer through which the sequence was passed. For J)E AR_, the input on
successive time steps consisted of J) , DE, EA, AR, R _. The input layer
had six un its, the context layer two, and the output layer four . The network's
task was to associate each sequence with a corresponding output unit . To
perform this task, the network must learn to discriminate D from B in the
first letter position and N from R in the fourth let ter pos ition. This can be
achieved if the context units learn to behave as Wickelement detect ors. For
example, a context unit that responds to the Wickelements _D or DE serves
as a B-D discriminato r; a unit that responds to R_ or AR serves as an N-R
discriminator. T hus, a solution can be obtained with two context units.

Fifty replications of the simu lation were run wit h different initial weight
configurations. The task was learned in a median of 488 training epochs, the
criterion for a correct response being that the output unit with the largest
value was the appropriate one. Figure 3 shows the resu lt of one run. The
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weights appear in the upper half of the figure and activity levels for each
input sequence in the lower half . The weights are grouped by connection
type, with the input-context connect ions in the upper-left array, followed by
the decay connections (di), zero points (Zi), an d context- ou tput connecti ons".
Each connection is depicted as a square whose area indicat es the rela t ive
weight magnitude, and shading the weight sign - black is positive , white
is negative. The sizes of the squares are normalized wit hin each array such
that the largest square has sides whose length is equal to that of the vertical
bars on the right edge of the array. The absolute magnitude of the largest
weight is indicated by the number in the upper-right corner . Among the
input-context connect ions, the largest weight magnit ude is 6.47, among th e
decay values 1.00 , the zero points 0.02, and the context-output conn ections
6.84. Because normalization is performed within each array, weight magn i­
tudes of different connectio n types mu st be compared with reference to the
normalization factors .

The units within each layer are numbered. The weights feed ing into an d
out of context unit 1 have been arr ange d along a single row, an d the weights
of context unit 2 in the row above. Bias terms (i.e., weight lines wit h a fixed
input of 1.0) are also shown for the context and output units.

For the activity levels in the lower half of the figure , there are four columns
of values, one for each sequence. The input pattern it self is shown in the
lowest array. Time is represent ed along the vertical dimension, with the first
time step at the bottom and each succeeding one above the prev ious . The
input at each time reflects the buffer contents . Because the buffer holds two
sequence elements, note that the second element in the buffer at one time
step (the activity pattern in input units 4 - 6) is the sam e as the first element
of the buffer at the next (input units 1 - 3).

Above the input pattern are, respecti vely, the context unit activity levels
after presentation of the final sequence element, the output unit activity
levels at this time, and the target output values . T he activity level of a
unit is proportional to the area of its corresponding square. If a unit has an
activity level of 0.0, its square has no area - an empty space. T he squares
are normalized such that a "un it square" - a square whos e edge is the length
of one of the vertical bars-correspo nds to an activity level of 1.0. While the
input, output , and target activ ity levels range from 0.0 to 1.0, the context
activity levels can lie outside these bounds, and are, in fact , occasionally
greater than 1.0.

With these preliminaries out of the way, consider what the network has
learned. At the completion of each sequ ence, the context unit activity pat tern
is essentially bin ary. Context unit 1 is off for .J3EAN_ and _BEAR_ and on
for J)EAN_ and J)EAR_i thus, it discriminat es B and D. Context unit 2
is off for _B E A N _ and J)EAN_ and on for .J3EAR_ and J)EAR_i thus,
it discriminat es N and R. However , the context uni t s do not behave in a
straightforward way as Wickelement s. If context un it 1 were sharply tuned
to, say, J) , the input-context weights should serve as a matched filter to the
input pattern J). This is not the case: the weights have signs - + - - +-
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Figure 3: The DEAR/DEAN/BEAR/BEAN problem. The up­
per half of the figure shows learned weights in the network, the lower
half activity levels in response to each of the four input sequences.

but the _D input pattern is 1l001l . Nor is context unit 1 tuned to the DE,
whose input pattern is OllOlO. Instead, the unit appears to be tuned equally
to both patterns. By examining the activity of the unit over time, it can
be determined that the unit is activated partly by _D and partly by DE,
but by no other input pattern. This makes sense: .D and DE are equally
valid cues to the sequence identity, and as such, evidence from each should
contribute to the response. To get a feel for why the detector responds as it
does, note that _D (llOOll) is distinguished from _B (1l0001) by activity in
unit 5, DE (01l010) from BE (001010) by activity in unit 2. The weights
from inputs 2 and 5 to context unit 1 are positive, allowing the un it to detect
D in either context. The other weights are set so as to prevent the un it from
responding to other possible inputs. Thus, the unit selects out key feat ures of
the Wickelement s _D and DE that are not found in other Wickelements. As
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such, it behaves as a _D E Wickelement det ector , and context un it 2 behaves
simi larly as a AR _ detector.

Generalization testing supports the notion that the context units have
become sensitive to these Wickelements. If the input elements are permuted
to produce a sequence like AR-BE, which pr eserves the Wickelements AR_
and -BE, context uni t responses are similar to those of the original sequences.
However, with permutations like _R B_, _DAER_, and D EA R (without the
end delimiters), which destroy the Wickel ements AR_and ...BE, context uni t
responses are not contingent upon the D, B , N, and R. Thus, the context
uni ts are responding to these key letters, but in a context-dependent manner.

I must admit that most solutions discovered by the net work are difficult
to interpr et. T he examp le in figure 3 is fairly clean bec aus e the d; and z, were
initially set to values near 1.0 and 0.0, respectively, and the learn ing rate for
these parameters was turned down, forcing fina l solutions with values close
to these init al ones. This encourages the context units to produce a mor e
sharply tuned "all-or-none" response to each sequ ence element .P Nonethe­
less, even less clean solutions show the same qualitative behavior as the one
discussed.

9 . Learning the regula r ities of verb past t ense

In English, the past tense of many verbs is formed according to a simple
rule. Examples of these regular verbs are shown in table 2. Each st ring
denotes the phonetic encoding of the verb in italics and each symbol a single
phoneme. The notation of phonemes is the same as that used by Ru melh art
and McC lelland [1J, from whom the examples were borrowed . Regul ar verbs
can be div ided into three classes , depending on whether the past te nse is
formed by adding r dl (an "ud" sound), examples of which are shown in the
first column in table 2, ItI (the second column), or Idl (t he third column ).
The rule for determining the class of a regular verb is as follows.

If t he final phoneme is dental Udl or It!), add (d/;
else if the final phoneme is an unvoiced consonant , add It/;
else (the final phoneme is voiced), add Id j.

A network was t rained to classify the sixty examples in table 2. Each
phoneme was encoded by a set of four trinary acoustic features (see [1],
table 5) . The input layer of the network was a two-element buffer, so a verb
like Ikampl appeared in the buffer over t ime as .k , ka, am, mp, p.; The
unders core is a delimite r symbol placed at the beginning and end of each
string .

3Wit h d; closer to 0.0, a cont ext unit 's act ivity depends primarily on recent sequence
elements , allowing it to be sloppy with its resp onse to earlier element s; likewise, with d,
much larger tha n 1.0, act ivity dep ends primarily on the early sequence elements, and the
uni t may be sloppy with respect to recent elements. With Z; closer to -0.5, all-or-none
responses are not necessary because th e effect of spurious act ivity can be cance lled over
time.
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+rd/ +/t/ + / d/
/dEpend/ (depend) rprOC/ (approach) / Tret ' n/ (threaten)
/gId/ (guide) / bles/ (bless) / Ser/ (share)
/inklUd/ (include) / disk's / (discuss) /ans'r / (answer)
/ k ' mand/ (command) / emba r ' s/ (embarrass) /dEskrIb/ (describe)
/mOld/ (m old) /fAs/ (face) / drI/ (dry)
/ pIEd/ (plead) /help/ (help) / fAr/ (fare)
/prOvld/ (provide) /kamp/ (camp) / frW n/ (frighten)
/rEgord/ (regard) /kuk/ (cook) /kUl/ (cool)
/s'rWnd/ (surround) /mark/ (mark) /k'ntAn/ (contain)
/ trAd/ (trade) / n ' rs/ (nurse) / krI/ (CIY)
/SWt/ (shout) / p ' rC' s/ (purchase) /l ' v/ (Jove)
/ tempt/ (attempt) / pas/ (pass) / mln / (mine)
/ dEvOt/ (devote) / pik/ (pick) /prOgram/ (program)
/ ekspekt/ (expect) / prOdUs/ (prod uce) / rEfuz/ (refuse)
/ k' nsist / (consist ) /puS/ (push) / rEvU/ (review)
/ nOt / (note) /rEC/ (reach) / s ' plI/ (supply)
/ prEzent/ (present) / rok/ (rock) / st ' dE/ (study)
/reprEzent/ (represent) /s kraC/ (scrat ch) / tremb ' l/ (tr emble)
/trEt/ (treat) /trAs/ (trace) jyUz/ (use)
/want / (want) / woS/ (wash) / prEvAl/ (prevail)

Table 2: Examples of regular verbs.

T he network had eight inpu t uni ts (two time slices each consist ing of four
features) , two context uni t s, and three output units- one for each verb class.
For comparison, both focused and full network architectures were studied .
The full archite cture was the same as the focused except it had complete
connectivity in the context layer and an act ivat ion function like equat ion
(12.1) instead of (3.1). The number of connect ions in each architecture was
the same: the focused network requires four connect ions wit hin the context
layer, two for the d; and two for the zi, and the full network also requires four ,
to connect each unit to each other. Learning rate parameters (see section 7.1)
were adjusted to yield the best possible performance for each architecture.

Figure 4 shows performance on the training set for the two architectures,
averaged over fifteen runs with different init ial random weights . A verb is
considered to have been categorized correctly if t he most active output unit
specifies the verb's class. Both focused and full networks are able to learn
the t ask , although the full networ k learns somewha t more quickly. Both
networks have learned th e underlying rule, as indi cat ed by their excellent
generalization performance on novel sequences (dat a points on far right of
figure 4).

Typical weights learned by the focused network are presented in figure 5,
along with the output levels of the two context units in response to twenty
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verbs. These verb s, though not part of the t raining set, were all class ified
correctly.

The response of the context uni ts is st rai ghtforward. Context unit 1
has a positive act ivity level if the final phoneme is a dental (/ dl or It!),
negative otherwise. Context unit 2 has posit ive act ivity if the final phoneme
is unvoiced , near zero otherwise. These are pr ecisely the features required to
discriminate among the three regular verb classes . In fact , the classification
rule for regular verb s can be observed in the context-output weights (the
rightmost weight matrix in figur e 5). Connections are su ch that output
unit 1, which represents the "add r d/ " class, is activated by a final dental
phoneme; output unit 2, which represents the "add It/" class, is activated
by a final non-dental unvoiced phoneme; and output unit 3, which rep resents
"add Id/" class, is activated by a final non-dental voiced phoneme.

Not e that the decay weights in this simulation are small in magnit ude; the
largest is 0.02. Consequently, context units ret ain no hist ory of past even ts ,
whi ch is quite sensible because only the final phoneme determines the verb
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Figure 5: The regular verb problem. The upp er half shows learned
weights in the network, the lower half shows the final activity levels of
the context units in response to a variety of verbs. Verbs in the first
column all end with It/, in the second column with Id/, the thir d
column with an unvoiced consonant, and the fourth column wit h a
voiced consonant or vowel.

class . This fact makes verb classification a simple task: it is not necessary
for the context units to hold on to informat ion over t ime.

Consider now the opposite problem. Suppose the network is given the
same verb classification task, but the order of phonemes is reversed; inst ead of
IeksplAn / , InAlpske/ is prese nted . In this problem, the relevan t information
comes at the start of the sequence and mu st be retained un t il the sequence is
completed. Figure 6 shows performan ce on reversed regu la r verbs, aver aged
over fifteen runs. The focused net work is able to learn this task , with two
context units, although the number of training epochs required is higher than
for unr eversed verbs . Gener alization is as good for reversed as unreversed
verbs . The full ne twork, however , does not succeed wit h rever sed verbs. In
explor ing a wide range of learn ing rate parameters, the highest single-run
performance I was able to obtain was 75%. The difference bet ween reversed
and unr eversed verbs is that the cri t ical information for classificati on comes
at the beginning of the sequence for rever sed verbs bu t at the end for unre-
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Figure 6: Mean performa nce on the reversed regular verb task as a
fun ction of learning epoch for the focused and full recurrent archi­
tectures. The bars indi cate one standard error of the mean in each
direction. Data point s for generali zation performance are shown on
the far right .

versed. In terms of the unfolded architecture of figure 2(b), t his corr esponds
to a low layer for reve rsed but a high layer for unrevers ed. These resu lts
thus suggest that err or signals are lost as they propagate back through the
deeply-layered full network. This issue is addressed further in section 12.1.

10. Learning t o reproduce a seq uen ce

In this task, the network is presente d with a three-element input sequence,
and then , following a fixed delay, must play back the sequence in ti me. The
training sequenc es consist ed of all permutations of three elements , A , B , and
C , resulting in a t otal of six sequences: A B C, ACB , B A C , BCA , CAB,
and CBA. An element was encoded by a binary activity pattern; A was
100, BOlO, and COOL The input layer contained three units on whi ch the
sequence was pr esented, one element per time step. At subsequent times, all
inputs were zero. T he order of events for A BC is presented in table 3. In
this example, there is a one time-step delay between the final element of th e
input sequence and the start of playback on the output units . Note that the



368

time step input target output
1 100 (A) 000
2 010 (B) 000
3 001 (C) 000
4 000 000
5 000 100 (A)
6 000 010 (B)
7 000 001 (C)

Michael C. Mozer

Table 3: Sequence of input and target output patterns for ABC.

target output levels are zero until playback commences.

To help the network keep track of its pos ition during playback, three
addi t ional input units were provided which represented the output at the
pr evious time step (an architecture suggested by Jordan [1 9]). During train­
ing, these inputs were set to the ta.rget output values; for the example in
tabl e 3, these inputs would be zero from times 1 - 5, 100 at t ime 6, and 010
at time 7. During testing , the true output values from the previous t ime
step were "quantized" and copied back to the input. Quantization entailed
set ting all out put levels greater than 0.5 to 1.0 and others to 0.0.

T he network was mad e up of six input units, three for the current se­
quence element and three for the previous output state, three context units,
and three output units . The task of the context uni t s was to learn a static
representation of the sequence that could be used in regenerating the se­
quence.

Fifteen repli cations of the simulation were run with random initial weights
for both focused and full network architectures. The focus ed network had
two-thirds as many connections within the context layer as the full - six
instead of nine.

Performance was judged using the quantized outputs. The task was suc­
cessfully learn ed on all runs . T he mean number of training epochs required
for pe rfect performance was 767 for the focused network and 620 for t he full
net work . Although the focused network took a bit longer to learn, this dif­
ference was not statistically reliable (t(28) = .958,p > .3). Figure 7 shows a
typical weight configur at ion obtained by the focused network and its response
to ABC.

The sequence reproduction task becomes more difficult to learn as the
delay between input and playback is increased . In the above example, the
delay was one time step. Simulations were also run at a four time-ste p delay.
Training continued until performance was perfect, up to a maximum of 15000
epo chs. The focused network was able to learn the task perfect ly on twelve
of fifteen runs , the full network on only two of fifteen . Mean performance
over all runs following training was 98.5% for the focused network, but only
72.9% for the full . This difference was significant (t(28) = 8.42,p < .001).
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Figure 7: The sequence reproduction problem. The uppe r half of the
figure shows learned weights in the focused network, the lower half
shows input, context, output, and target activity over time for the
sequence A B C. The sequence-to-be-reproduced is encoded on input
units 1-3; the quantized output from the previous time step is encoded
on input units 4-6.

Increasing the playback delay increases the time lag between the critical
inpu t information and the start of the response. The full network appears
ab le to learn only when the cri tical input shortly precedes the response,
whereas the focused net work is ab le to learn with extended time lags . T his
con clusion was also sugges ted by the regular verb result s.

11. Large ver b sim ula t ion

To study a more difficult task, the verb categ orization problem of section 9
was extended to a larger corpus of verbs. As before, the task was to classify
each verb according to the manner in which it s past tense is formed. T he
complexity of the task was increased by including both reg ular and irr egu lar
verbs, 136 t raining instances altogether, and a total of thirteen response
categories - three for regu lar forms and ten for irr egular . The response
categories and numbe r of training inst ances in each category are list ed in
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Category Instances Examples Category (how past
number in category tense is formed)

1 20 explain (explained) regular verb, add Idl
cry (cried)

2 20 dance (danced) regular verb, add It I
pack (packed)

3 20 reflect (reflected) regular verb , add rdl
guide (guided)

4 7 beat (beat) no change
put (put )

5 3 send (sent) change a final Idl to I t I
build (built)

6 8 deal (dealt) internal vowel change
mean (meant) and add a fina l I t I

7 6 do (did) internal vowel change
sell (sold) an d add a final Idj

8 5 bring (brought) internal vowel change,
teach (tau ght ) delet e final consonant ,

and add a fina l It I
9 5 have (had) internal vowel change,

make (m ade) delete final conso nant,
and add a fina l Idl

10 4 swim (swam) internal vowel change
ring (rang) of I ii to lal

11 17 feed (fed) intern al vowel change
get (got) and stem ends in a

dental
12 20 begin (begun ) other internal vowel

break (broke) change
13 1 go (went) go in a category by

it self

Table 4: Verb classification.

table 4. The categories are based loosely on a set suggested by Byb ee and
Slobin [28].

T he corpus of verbs was borr owed from a psychological model of Rumel­
hart and McC lelland [1] designed to account for children 's acquisition of verb
pas t t enses . T his model would produce the past te nse of a verb given it s in­
finitive form as input. The repr esentati on used at both input and output
ends is a Wickelelement enco ding of the verb, each Wi ckelement enco ding a
particular ph onetic feature in the context of two neighb orin g phonetic fea­
tures. Because this st ati c representat ion is built into the model, the mo del
did not requ ire te mpo ral dynamics. My interest in studying this problem
was to see whether the focused recurr ent network could, given t ime-varying
inpu ts , learn something like the Wickelement representation pres upposed by
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Rumelhart and McClelland's model. T he focused network seems ideal for
the task because its architecture is tailore d to learning W ickelement repr e­
sentations.

The t ask is difficul t. The verb classes contain some internal regul arities,
but these regulari ti es are to o weak to be used to uniquely classify a verb.
For inst an ce, all verbs in category 3 end in a Idl or ItI, but so do verbs
in categories 4, 5, and 11. Whether a verb ending in Idl or ItI belongs in
category 3 or one of the other categories depends on whether it is regular,
but there are no simple features signaling this fact . Fur th er , fine discrimi­
nations are necessary becau se two outwardly simi lar verbs can be classified
into different categories. Swim and sing bel ong to category 10, but swing to
category 12; ring belongs to category 10, but bring to category 8; set belongs
to cat egory 4, but get to category 11. Finally, the task is difficult becaus e
some verbs belong in multiple response categories; for example, sit could go
in either category 10 or 11. The lowest category number was chosen in these
cases.

Because the category to whi ch a verb belongs is somewhat arbitrary, the
netwo rk must memorize a large number of special cases . (Indeed , an earlier
vers ion of these simulations were run in which the t arget responses were
incorrect for about 15% of the items . The network learned the t ask just as
well, if not a bit faster than in the simulations reported below.)

The network architecture was similar to that used in the regular verb
example. The input layer was a two-phoneme buffer , an d the encoding of
phonemes was the same as before. The output layer consisted of thirteen
units, one for each verb class . Both focused and full net work architectures
were simulated. To match the two net works on number of conne cti ons, 25
context units were used in the focus ed network, 16 in the full; this resul ted
in 613 weights for the focus ed network and 621 for the full network.

Figure 8 shows performance on the training set for the two architec­
tures, averaged over ten runs with different initial random weights. A verb
is considered to have been categorized correct ly if the most active output
uni t specifies the verb's class. Both focused and full netwo rk s are able to
learn the task , although the full network learns somewhat more quickly. Er­
rors observed during t raining seemed quite reasonable. Verbs are some t imes
"overregularized, " as when eat becomes eated. Overgeneralization occurs in
other respects , as when sit was misclassified in category 4 - verbs whose
past tense is the same as the root - pres umably by analogy to hit an d fit
an d set. Surprisingly, neither the full nor focused net had difficulty learn ing
category 13, although it contained only a single verb - go.

Generalization performance on novel sequences is poor for both netwo rks
(data points on far right of figure 8) , but this is readily explained. The cor­
pus provided by Rumelhart and McC lelland had 420 verbs alt ogether. To
normalize across categories, at most twenty verbs from each category were
used in the training set . Consequ ently, the regular verb class es were approx­
imately the same size as the irregular classes, eliminat ing any a priori bias
toward classifying an unfamiliar verb as regular. The verb s from the corpus
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Figure 8: Mean performance on the large verb problem as a function
of learning epoch for the focused and full recurrent architectures. The
bars indicate one standard error of the mean in each direction. Data
points for generalization performance are shown on the far right.

not used in training were used for gene ra lization testing; these verbs were
almost exclusively from the three regular verb categories. Thus, the network
at tempte d to classify the unfamiliar regul ar verbs without any expectati on
that the verbs would be regular. Most all errors involved mistaking the verbs
to be irregular.

Typical weights learned by the focused network are presented in figure 9,
along with activity in the network in response to two sequences, J'iN _ (ring)
an d _briN_ (bring). These simi lar input patterns produce different outputs :
J'iN _ belongs in category 10 and _briN_ in category 8. One can easily
expend a great deal of effort t ryi ng to interpret the behavior of individual
context un it s and how they serve to distinguish two inputs like J'iN_ and
_b r iN _. I leave this as an exercise for the reader.

12. E valuation of the focused architectu re

T he simulations reported above are ty pical of results I have obtained wit h the
full and focused architectures . For both architectures , learning becomes more
difficult as the delay between the critical input and the response is increased.
This was observed in two simu lations: the regular verbs and the sequence
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reproduction task. While this difficulty is manifested in slowed learning
for the focused architectur e, its effect on the full architecture is far more
devastat ing. The full architecture is simply unable to learn tasks that involve
long intervals between critical inpu t and response. Not all tasks are of this
nature, however . For tasks in which the informat ion contained in the input
is more evenly distributed across time, e .g., the large verb simula tio n, the
full ne twork appears to learn in fewer training cycles when full and focused
networks are matched on total number of connections .

Nonetheless, the focused architecture is a clear win on at least two grounds.
F irst, the focu sed architecture does not require each un it to maintain a stack
of it s intermediate activity levels. Thus, not only is it less memory intensive ,
but it has far greater plausibili ty as a true neural model. Second, learn ing
in the focused architecture is less computation intensive because backprop­
agat ion of the error signal in t ime is eliminated . T he focused architecture
requires about two -thirds as many float ing point operations per train ing cy­
cle as the full. T his savings is achieved whether the net work is implemented
in serial or parallel hardware.

12.1 Scalin g properties

A crit ical question to be asked of any network architecture is how well its
performance will scale as the problem size increases. The focused architec­
ture promises to scale be tter than the full arch itecture wit h respec t to the
sequence lengt h . The reasoning is as follows. As I discusse d previously, any
rec urrent architecture (e.g ., figure 2(a)) can be unfolded in t ime to obtain a
computationally-equivalent feedforwar d network (figure 2(b )). T he depth of
this un folded network increases with sequence length. However , an un folded
vers ion of the focused arch itec ture can be const ructed with a fixed depth an d
a breadth that inc reases with sequence length (figure 10) . The input units
and context units are replicate d for each time step of the sequence. Each set
of context uni ts is activate d solely by the inp ut at the corres ponding time
st ep . In the third layer of the network, t he net acti vity of context unit i is
comp uted by taking a weighted sum of unit is activity at each time T from
T = 1· · · t . This simple summation is poss ible because the int egration of
conte xt uni t activity over time is linear . That is, t he context unit activat ion
equation

Ci (t ) = diCi(t - 1) + s [neti (t )]

can be rewritten in closed form as

t

Ci (t ) = L:d;-Ts [neti (T)J.
T=l

(12.1)

Each set of un its in the second layer of figure 10 computes s[ net i(T )J. T he
t hird layer then sums the s [net i(T)] across T, weighted by the decay factor
d;-T, to obtain Ci (t ).
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Figure 10: An unfolded version of the focused architecture having four
layers. Input and context units are replicated for each time step of
the input sequence. The activity of each context unit is summed over
time in the third layer , weighted by a time-dependent decay factor.
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Consider the sit uation when all d; are near 1.0, as they are set at the
start of a simulation. Information from all times will be integrated with
equal weight; no matter when in time an input appears, it will be t reated
uniformly. If the des ired response of the network depends on a critical in­
put at a particular time, it will not matter when in time this input occurs.
Further, inc reasing the length of a sequence serves only to add background
noise against which the critical input must be detected."

To recap, longer sequences translate to a greater effective depth of the
full architecture, but a greater effective breadth of the focused architecture.
As I argued in section 2, one has reason to suspect that deep and narrow
networks are mo re troublesome for backpropagation than shallow and wide
ones. If so, t he focused network sho uld sca le better wit h respect to sequence
leng th.

Indeed, comparisons of the full and focused architectures reported above
can be int erpret ed as support for this claim. Consi der the reg ular verb ex­
ample. When the verb s are presented unreversed, only the fina l sequence
element is crit ica l for classificati on. Thus, although the unfolded full net ­
work may have as man y layers as sequence elements, t he effective depth to
which the network must attend is quite shallow. Reversing the verbs increases
the effective depth. T he comparison of unreversed and reversed verbs in the

4Note that if the decay terms become much less or greater than 1.0, there becomes a
bias toward recent or distant information, respectively. It is thus impor tant to start the
system with initial decay terms near 1.0 and to change them slowly.
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full network is therefore a test of scaling as the effective dep th increases; t he
same comparison in the focused network is a test of scaling as the effective
breadth increases. In this case, greater depth is clea rly more detrimental
than greater breadth.

The focused and full networks differ along two dimens ions . The focused
network has 1 - 1 connections in the context layer and the context-unit
activat ion function is linear; the full network has comp lete connectivity in
the context layer and a nonlinear context unit integration function (one in
which the recurr ent connections are contained within the squashing function ).
The dep th-versus-breadth result is contingent on linear integration, not on
1 - 1 connections within the context layer . As was mentioned previously,
Bachrach [27], Yoshiro Miyata, and I have examined a third architecture ­
one with 1 - 1 connections and nonlinear integration. This architecture does
not seem to perform well, as one might predict on the basis of the nonlinear
integrat ion function . Note that we have not explored a fourth and potentially
promising architecture, one with complete connectivity in the context layer
and a linear integration function.

13 . P roblems with t he approach

Desp ite reasonable success with the focused architecture, some difficult ies
should be pointed out . First, instability problems arise if the decay values
become larger than l.0 because such values allow a unit 's activity to grow
exponentially over time. In practice, this is not a serious problem as long as
learning rates for the decay connections are kept small. None theless, the final
acti vity levels of the context units can become ridiculously lar ge, particularly
on generalization testing if the novel patterns are longer than the training
pat terns . For example, in the reversed regular verb prob lem, generalizat ion
testing occasionally produced context unit activity levels above 25. One
possible solut ion is to constrain the allowed values of the decay connect ions.
I have t ried restricting the allowed values to the interval a-1. Generally, this
res triction increases the number of learning trials requi red, but does imp rove
st ability and generalization performance.

A second criticism of the focused architecture is that it uses an input
buffer. This buffer was motivated by the desire to train context unit s to
respond to Wickelements, but is not strictly necessary. For most problems I
studied, the network could learn without a buffer provided sufficient traini ng
and ad ditional context units . However, without a buffer, the context units
are unable to obtain nonlinear interactions acros s time. For instance, a sin­
gle unit cannot be tuned to respond sharply to input A followed by input
B bu t no t to either A or B in isolation. No matter, the buffer used in the
focused architecture is altogether different from that required by the naive
buffer model presented in section 1. The buffer in the buffer model specifies
a temporal window over which information integration can occur, whereas
the focused architecture's buffer specifies a temporal window over which non­
linear interact ions can occur. The focused architecture will almos t certainly
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not need as large a buffer as the buffer model.
A final difficulty with the focused architecture is that, while it may be

app ropriate for relatively short sequences , it is unclear how well the approach
will work on long sequences in which very little information is contain ed in
a single sequence element , e.g. , a speech recognition task wit h the time­
domain waveform as input. Of course, this sort of problem is difficult for the
full architecture as well. One solution is to extend the buffer size to capture
significant segment s of the input . It would seem a more promising solution,
however, to preprocess the input in some manner, perhaps using unsupervis ed
learni ng mechanisms, to obtain higher-order features which could then be fed
into the recognition system.

14. A cknowledgm ents

Than ks to Jeff Elman, Yoshiro Miyata, and Geoff Hinton for their insightful
comments an d assistance. T he graphical disp lays of network st ates would
not have been possible without Yoshiro's code. Dave Rumelhart and J ay
McClelland were kind enough to provide me with the phonological encoding
and classification of verbs from their simu lation work.

This research was supported by Grant 87-2-36 from the Alfred P. Sloan
Foundat ion to Geoffrey Hinton, Contracts NOOO I 4-85-K-0 450, NR 667-548,
and NOOOI4-85-K-0076 wit h the Office of Nava l Research, a grant from the
System Development Foundat ion to Donald A. Norman and David E. Rumel­
hart, and an IBM Gradua te Fellowship.

Appendix A . . Derivat io n of the focused back propagation
algorithm

Assume the following situation: a t time step sequ ence has been present ed
and at time t a desired output is spec ified that allows for the computat ion
of an err or signal. The problem is to determine two quantities: the error
gradient with respect to the recurr ent connections (EJE / EJdi) and with resp ect
to the input- context connections (EJE /EJWji) '

Beginn ing with the recurrent connections, the chain rule can be used to
expand EJE /EJdi:

EJE EJE EJci(t)
EJdi EJci (t) EJdi

EJE/ EJci(t) can be computed directl y by backpropagat ing from the output
layer to the context layer at time t . Thus, the problem is to determine
EJci(t )/ EJdi. Given that

and

Ci(t) = dic;(t - 1) + s[neti(t)J

neti(r) == 'Ewkixk(r)
k

(A.l )

(A.2)
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(rewriting (3.1) from the main text) and assuming the initial condit ion Ci(O) =
0, the difference equation (A.1) can be rewrit ten in closed form as:

t

Ci(t) = L d;-Ts[neti(T)].
7"=1

Defining

_ OCi(t )
ai (t ) = odi '

(A.3)

by substituting Ci(t) from (A.3) and computi ng the pa rt ial derivat ive, we
obtain

ai(t)

t- l

L (t - T)d; -T- ls[neti(T)].
T=1

Regrouping the te rms,

t - l k

ai(t) = L L d;-T-ls[neti(T)]
k=IT=1
t - l k

L d;-k-l L df- Ts[neti(T)].
k=1 T=1

Combining (A.3) and (A.5),

t - l

ai(t) = L ~-k-lCi(k ).

k=1

(A.4)

(A.5)

Removing the k = t - 1 term from th e summation and factori ng out di , we
obtain:

t -2

ai(t) = Ci(t - 1) +d, L ~-k-2c.;(k).

k=1
(A.6)

From (A.4), the summation in (A.6) can be replaced by ai(t -1) to yield the
incremental expression:

ai(t) =Ci(t -1) +diai(t - 1).

Following a similar derivat ion for the input -context connect ions, we can ex­
pand oE/owji:

oE ss OCi(t)
OWji OCi(t) OWji

As stated above, oE/oc.;(t) can be computed directly by backpropagating
from the output layer to the context layer at time t. Thus, the problem is to
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determine aCi(t) !aWji. Defining

(3 ..( ) = aCi(t)
J' t - '" ,ouu,
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by substituting Ci (t ) from (A.3) an d comput ing the partial de rivative, we
obtain

a t

(3ji(t) = aw).~£f;-"'S[neti(T) ]].

Usi ng (A .2) to compute the derivative of s[neti (T)],

t

(3ji(t) = L £f; -'"s' [neti(T)]Xj(T).
7"=1

(A.7)

R emoving t he T = t t erm from the summation and factoring out d. , we
obtain:

t-l

(3j i(t) = s'[neti(t)]Xj(t) +d, L £f;- -r- ls'[neti(T)]Xj(T).
7 =1

(A.8)

From (A.7), t he summation in (A.8) can be replaced by (3ji(t - 1) to yield
the in crement al expression:
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