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Candidates for the Game of Life in Three Dimensions'

Carter Bays
Department of Computer Science, University of So uth Carolina,

Columbia, SC 29208, USA

Abstract. The game "Life" is defined in a strict sense and three
candidates for t hree-d imensional versions are presented. One of these
versions can be structured to contain an infinite number of parallel
two-dimens ional universes, each of which allows for t he evolution of
Conway life objects. Various oscillators are described, and a few inter­
esting collisions between translating oscillators ("g lide rs") and other
objects are mentioned.

1 . Introduction-Conway's Game of Life

Most readers are probably familiar with John Conway 's two-dimensional
cellular automaton known as the "Game of Life" 13,4J. The game is "played"
by zero players on an arbitrarily large grid of square cells, where each cell
is either "alive" or "dead". Essentially, the game works as follows. Start at
generation one with some pattern of living cells (squares on the grid that
are filled in). To obt ain the nex t generation , apply the following transition
rules concur rent ly to each cell, C, on the gr id, whether filled in or not. Rule
One: If C is living an d if it touc hes two or three living cells, it remains alive
for th e next generation; otherwise , C dies [i.e ., erase the filled-in square for
next generation) . Rule Two: If C is not living and if it touches .exact ly
three living cells, C becomes alive [i.e., fill C in for next generation).

Readers familiar with the game may recall t hat with ap propriate start­
ing patterns , we can obtain a host of stable and oscillating shapes, which
Conway and ot hers have given such whimsical names as "beehive", "blink­
er", "clock", "pulsar", etc . Severa l oscillators translate across the grid
with successive generat ions; such oscillators are t rad it iona lly called gliders ,
a term which we shall use throughout this paper .

1.1 T he r ules of Life

We can formalize the rules for Life as follows. Define environment E as
the number of living neighbors required to prevent a cu rrently living cell

..A preliminary report on some of this work appeared in [1,2].
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from expiring, with El :5 E :5 Euo FertjJjty F is the number of neighbors
required to create a new liv ing cell, F, :5 F :5 F... . Define the transition rule
R as the 4-tuple (E,EvF1Fv ) ' For Conway's Life, R = (2333).

Naturally, we can construct other rules to apply to a two-dimensional
grid. For example , R = (3434) yields a game known as "3-4" Life, which
exhibits a variety of osci llators which are totally different from those result­
ing from R = (2333) . Unfortunate ly, it is easy to produce starting patterns
in 3-4 Life t hat rapidly expand forever . 'True, we can force (2333) to pro­
duce forms that grow without limit , but the int r iguing feature of (2333) is
that this can only be done with carefully constructed configurations.

We could also enlarge the neighborhood , or introduce "aging", where
a living cell dies afte r a certain numb er of generations. Work has also
been done using a hexagonal instead of a square grid [5] . Conway's rule is
much less compl ex than most of the hexagonal transition rules- and therein
lies its beauty. Our goal here is to describe similar elegant rules in three
dimensions which yield a large, interesting variety of stab le shapes and
osc illators, support one or more gliders, and when applied to any init ial
and relat ively haphazard configuration of cells, will ultimately stabilize .
Hence, we restrict our use of the name "Life" to only those rules that are,
as Dewdney puts it, "worthy of the name" 121. The following definit ion
formalizes this restriction.

D efinition 1. A rule E1EuF,Fu defines a "Gameof Life" if and only if both
of the following are true.

1. A glider must exist and must occur "nat urally" if we apply EIEuFiFu
repeatedly to primordial soup configurations.

2. All primordial soup configurations , when subjected to EI EuF1Fu, must
exhibit bounded growth.

(Here we define primordial soup as any finite mass of arbitrarily dense
randomly dispersed living cells.)

We have not specified in our definit ion jus t how many "soup experi­
ments" to perform before we conclude that a glider does not ex ist; this
question is best answered by considering the implicat ion of definition I-if
a glider does not condense out of some haphazard arrangement of cells, then
there is little hope of creating one by bombarding some configuration with
a (man-made) glider. Thus, the "rarer" a glider is, the less likely that in­
terest ing configurations (e.g. a "glider gun"-a manufactured device which
produces an endless supply of gliders) may exist.

2. Finding a rule for three-dimensional Life

In three dimensions, a cell can have from 0 to 26 living neighb ors; hence,
we may construct a huge variety of rules of the form described above.
Specifica lly, we can have
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(E" Eu ) = (1,1), (1,2),(1,3), . .. (1,26);(2,2) ,(2,3) , ... etc.
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for a total of (26 + 25 + . . .1) = 351. A similar number of values for (P" Pu )

gives a total of 123,201 possible ru les. Fortunately, if we are looking for
a rule that behaves in a manner similar to Conway's rule, we can restrict
our scope cons iderably, since most of the possible combinations y ield forms
that expand rapidly and indefinitely or quick ly shrink and disappear. The
following theorems are of assistance.

Theorem 2. Any rule EIEuFIFu with FI ~ 10 cannot s upport a glider.

T his is eas ily seen when one observes that a non- living cell adjacent to
a plane of living neighboring cells can have at most nine neighbors-s-an
upp er bound for a cell adjacent to any plane grouping of cells . Thus, any
formation under ru le (X Y 10 Z) will ulti mately either shrink and disappear,
or will form a convex blob whose ou ter surface of living cells may remain
in tu rmoil , but will never translate across the universe (see figure 1) .

Theorem 3. Any rule E1EuFlFu with Fi ::; 4 leads to unlimited growth.

To prove theorem 3, simply start with a cluster of four neighboring cells
arranged in a square (see figure 2 for a more exotic example).

After testing several possibilit ies, it becomes obvious that rules dealing
with from four to seven neighbors have the most potential. Starting con­
figur ations that are operated upon by rules (5767), (5777), (5566), (5755) ,
(4656) , (4655), (6767), (4567), (6766), etc., seem to eit her vanish quickly,
leavi ng little or no res idue, or grow indefinitely. Furthermore, none of these
ru les seem to supp ort a glider. Rule (5655) offers several interesting small
oscillators (see figure 3), but its residue is rather sparse and an exhaustive
search has revealed no glider. Ru le (5877), as well as other rules whose
environment range exceeds 3, leaves too much nameless debris and does
not seem to yield particularly interesting configurations. Rule (4666) offers
several int eresting oscillators, but leaves much more res idue than (4555)
and does no t appear to support a glider. The same can be said about
(4566), (3455) , and (3566) . One should observe at this point that we can
eas ily create ru les wh ich leave stable non-oscilla ting patterns just by uti­
lizing a small fert ility range and a large environment range. Furthermore,
one can find an infinite supply of distinct oscillators with arbi trarily long
periods simply by constructing dense "random" blobs and applying ru les
with F, > 10; for example, the per iod of the oscillating blob in figure 1
un der rule (10 2110 21) exceeds 100.

2. 1 The hest rules

Of all the ru les investigated, only R = (4555) and R = (5766) satisfy
defini t ion 1. (T hese games can be denoted "Life 4555" and "Life 5766".)
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Figure 1: The rule (10 2110 21) frequently leads to ohjects that look
similar to the one shown. This object oscillates with a period in excess
of 100. By starting with large initial objects, we can create oscillators
with periods as long as we wish.
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Figure 2: The rule (4526) leads to immediate unbounded growth.
Here, the starting pattern was six centrally placed cells.
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Figure 3: Some of the oscillato rs for the rule (5655). With initial ran­
dom soup, (5655 ) produces very littl e residue . An exhaus tive search
has revealed that this rule supports no natu rally occ urring glider.
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Ru le (5766) leads to stable and oscillat ing forms (see figure 4) that are
similar in many ways to Conway's (2333) , as discussed below. One of the
characteristics of Life 5766 is t hat the t hree env ironment states a llow for a
large number of small stable asymmetric objects. For example, if we confine
our scope to the stable forms that can be contained within a 4 x 4 x 4 cube ,
there are well over 100 varieties. (F igure 5 depicts just a few of the many
stab le shapes that can be created by removing from one t o four cells from
a 24-element stable object.)

Rule (4555), although somewhat less prolific than (5766), may ulti­
mately be a more int erest ing rule. For one th ing, (4555) requ ires more
t ime to "set t le down " than (5766) ; hence, there is more of a poss ib ility for
interesting intermediate reactions. Moreover , it is formed simply by adding
2 to Conway's rule, R = (2333). Perhaps the most fascinating feature of
(4555) is that there exist an abundance of small stable and oscillating forms
that usu ally exh ibit symmetry of some sort. This rule will be discussed in
more det ail in section 2.3.

2.2 A com p a r ison between Conway's Life and t h ree- d im ensional
Life

Before proceeding further, we should examine the re la t ionsh ip between the
above three-dimensional Life rules and Conway's two-d imensional rule , R =
(2333). De fine a Conway object as any con figuration of cells, stable or no t,
that ex ists at some point during Conway's ga me . Ce lls in Conway objects
will have coordinates (XhYi,O)j that is, t he object lies in the Z = a plane.
We shall further employ the following de finit ions .

Definit ion 4. An expansion of a Conway object is form ed in three dim en­
sions by m aking copies of all living cells (Xi , Yi, 0) in to the adjacent Z plane,
i.e, (xi,Yi, I) .

Hence, the expansion has twice as many living cells as the original Conway
object. It mayor may not behave in an interest ing manne r when subjected
to one of the th ree-dimensional Life rules: R = (5766) or R = (4555).

Definition 5. A projection of a three-dimens ional Life object into two di­
mensions ex ists if and only H both of the following are true.

1. A ll of the living cells (Xi, yi, Zi) lie in two adjacen t planes. For th e
sake of discussion , let these planes be Z = a an d Z = l.

2. The p air of cells (Xi,yi,O) an d (xi, Yi,l ) are eithe r both alive or both
dead .

Definition 6. A n analog of a Conway object in th ree dimensions is an
expans ion which, wh en subject ed to the appropriate three-dim ensional Life
rul e, y ields after each and every generatio n a proj ect ion id entical to the
original Conway object for the same generation un der th e two-dimens ional
rule, R = (2333) .
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GLIDER

Figure 4: A few of the many small stable forme under Life 5766.
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Figure 5: Here are just a few of t he many stable shapes under Life
5766 that can be created by removing one or more cells from a 24­
element symmetric stable object. There are too many such forms to
illustrate .
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The above definitions fac ilitate statement of the following theorem.

Theorem 7. A Conway object has an analog under the three-dimensional
Life rule R = (5766) if and only if the Conway object has both the following
charactedstics at every (subsequent) generation:

1. A non-living cell in the neighborhood of the object cannot have six
living neighbors.

2. A living cell cannot have Bve neighbors.

The proof is obtained by examining tables 1 and 2.

Conway Object (5 7 6 6) Expansion
number of neighbors , N N) state of cells at N I state of cells at
when cell at (Xi, Yi,O) is alive (Xi , Yi, O) and (x j, Vi,l) (Xi l Yi, - I) and (Xi , Yi , 2)
N Next state N Next state N Next state
0 dead 1 dead 1 dead
1 dead 3 dead 2 dead
2 alive 5 alive 3 dead
3 alive 7 alive 4 dead
4 dead 9 dead 5 dead
5 dead 11 dead 6 alive
6 dead 13 dead 7 dead
7 dead 15 dead 8 dead
8 dead 17 dead 9 dead

Table 1: Comparison of the number of neighbors and the status for
Conway cells and Life 5766 cells. For exa mple, if a Conway cell is alive
and has four neighb ors (line 4 in th e table), then next generation it
will die, as will th e pair of cells in the Life 5766 expansion . When
a cell in th e Conway object has five neighbors, the next generation
of 5766 expansion will have new live cells in plants adjacent to the
expa nsion, t hereby destroy ing the analog.

Notice that the behavior of the expansion in Z = 0 and Z = 1 under
R = (5766) is iden tical to Conway's Life . A deviation only occurs in the
Z = - 1 an d Z = 2 planes; these deviations are the restrictions imposed by
theorem 1.

Upon further examination of tables 1 and 2, we obtain the following
corollary.

Corollary 8. The three-dimensiona l Life rule R = (5766) y ields behavior
that is more analogous to Conway's Life than any other three-dimensional
rule that we may const ruct as R= (E1, Eu, F1, Fu).

T he implicat ions of theo rem 7 are startling . If on e examines all the
small stable an d osci lla t ing Conway forms , one not ices t hat a great many



Candida tes for the Game of Life in Three Dimensions 383

Conway Object (5 766) Expansion

number of neighbors, N, N, state of cells at N , state of cells at
when cell at (Xj,yj,O) is dead (Xj, Yi,O) and (Xi, Yi, 1) (x;,y,, -l ) and (x;,y;,2 )
N Next state N Next state N Next state

0 dead 0 dead 0 dead
1 dead 2 dead 1 dead
2 dead 4 dead 2 dead
3 alive 6 alive 3 dead
4 dead 8 dead 4 dead
5 dead 10 dead 5 dead
6 dead 12 dead 6 alive
7 dead 14 dead 7 dead
8 dead 16 dead 8 dead

Table 2: Here we are concerned about next generation status for cells
t hat are not alive, but are in the immediate vicinity of live cells. When
the Conway object contains vacant cells with six live neighbors, then
the next generation of t he Life 5766 expansion will have new live cells
in planes adjacent to the expansion .

of them satisfy the cr iteria of the above theorem (see figure 4). Conway 's
glider has an analog un der (5766) , as do some of the more complicated
oscillators. Unfortunately, many of the more int eresti ng and impor tan t
Conway objects do not have analogs: for example, there is no analog for
the "glider gun" and othe r so-called breeding oscillators.

P re liminary testing has revealed that collisions between gliders an d
othe r objects, though occasionally analogous, usually yield non-analogous
res u lts. Sometimes t he first few generations after impact of analogous ob­
jects behave nicely, but sooner or later the condit ions of theorem 7 are
usu ally violated; when this happens, the object, theretofore confined to
two planes, almost always forms a roundish three-dimensional mass that
usu ally dies rather quickly, but occasionally stabilizes.

Note that analogous behavior is very narrow in scope-it takes place
entirely in two adjacent parallel planes. Obvious ly, we may alt er any three­
dimens ional glider-object collision by shifting one of the participants in the
Z direct ion . T hus, if t he analogs lie in the Z = 0, Z = 1 planes, we can
sh ift one of the objects by one, two, or three Z planes and ach ieve entire ly
differen t collision results . Furthermore, we need not confine our objects to
nearby Z planes-a glider can, after all, attack from a perpendicular plane
(see figure 6). Hence, analogous behavior is at most a small subset of Life
5766, which is replete with its own objects and collisions.

It is , of course, rather convenient to have an immediate supply of kn own
stable and osc illating Conway analogs a lready available for Life 5766. Fur­
thermore, we will soo n see that it just mig ht be possible to cons t ruct a
three-dimensional glider gun by placing appropriate objects on either side-
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2.2.1 Time-space barriers

If we build a stable plana r form where each living cell has seve n neighbors,
then no bi rths can ever occur in the two parallel ad jacent planes; these
planes are "dead". A port ion of such a form, ca lled a time-space barrier,
is shown in figure 7. If the flat part lies in the Z = 0 plane (extending an
un specified am ount in the positive X and Y directi ons) , t hen no glider or
other form approach ing from a higher Z p lane can eve r penetrate into the
Z = 1 plane. Of course, the same is t rue on the other side of t he barrier,
and we have not cons idered t he boundary, which here has been stabilized
with eigh t-element cubes. Naturally, we m ight choose to have our bar r ier
extend to infini ty in the X and Y dir ecti ons.

2.2.2 "Nearly 3-D" Life and Conway's game as a subset

Construct two arb itrarily large parallel time-space barriers and place them
init ially qui te some distance apart. Life forms under R = (5766) wou ld
behave in their usua l unrestricted fashion insofar as our distant barriers
would allow. But now we will move the barriers closer toge ther . As we do ,
evolving Life forms wou ld be "squeezed"; growth in the Z directi on becomes
more and more inh ibited . For example, when the barriers are separated by
six planes, all life is confined to the fOUI planes in the m iddle-what we have
here is a "nearly 3_D" Life where each spacing of the barri ers exhibits a
version of the game whose behavior is disti nct from any ot her configurat ion.
Now consider what happens when the barriers are four planes apart (figure
7). All life must then be confined to two planes. Recall from theorem 7 that
the (5766) analog to Conway's Life breaks down only because of growt h in
the Z direct ion. But now we have preve nted such growth; hence, an analog
to the entire Conway Life universe is contained between the barriers. For
that matter, we could const ruct an infinite number of parallel Conway Life
universes .

Of course, noth ing can slip out (in the X or Y dir ecti ons) from between
finite barriers-at leas t as they are constructed. For example, the edges
would inte ract with any escap ing glider, thus ruling out a simple glider gun.
Possibly, some oscillators could be appropriate ly placed to allow a glider to
leave the v icinity unimpaired ; this is undoubtedly t he eas iest approach to
gun construction.

2.3 The rule R = (4555)

We can build charts similar to tables 1 and 2 for R = (4555), yie ld ing the
following resu lts.

T heorem 9. A stable Conway object has an analog under R = (4555) if
and only if each living cell in the Conway object has exactly two n eighb ors.
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Figure 6: A collision between objects that are Conway analogs in Life
5766-a glider and a "clock" . Here, however, the glider is attack­
ing from a perpendicular plane. M far as the ent ire configura t ion
is concerned, only generations 7 through 10 are analogs of Conway
Life. At generation 10, theorem 1 part b, is violated; hence, growth
in the Z direction is initiated. For this particular collision, the living
mass seemed to remain confined to two planes for a short while before
suddenly "releasing" a stable 24-element object . The usual result of
a collision is a rather quick annihilation of both objects.
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Figure 7: The object at the left is a portion of a "t ime-space barrier".
No life can get within one cell of the flat portion of this form , which
can be made to extend indefinitely. The finite parallel barriers at the
right have four planes between. Hence, a "mini Conway universe"
analog can exist in the two middle planes as long as no shape wanders
too close to the barrier boundaries .
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Corollary 10. A Conway object that changes from one generation to the
next h as no analog under the three-dimensional Life rule R = (4555).

The conclus ion is that a lthough R = (4555) has an occasional analogous
form or two, it s "universe" is completely different from that of Conway­
and, for that matter, d ifferent from the universe of R = (5766). It is int er­
est ing that alt hough the two three-dimensional Life games behave in totally
d ifferent ways, they both seem t o stabilize rather qu ickly, with (4555) re­
quiring somewhat more time. For example, if we start with a random
configurat ion in, say, a 70 X 70 X 70 gr id , bo th rules will stabilize after
about 30 to 70 generations, depending upon the starting density. Colli­
sions between gliders and other small objects us ually die after about 5 to
20 generations-unless t hey hap pen to yield debris.

T he early discovery of a t ot ally distinct glider (figur e 8) was the cata­
lyst that led to the extensive invest iga tion of this rule . The (4555) glider
cont ains ten elements and, like Conway's glider (and its (5766) analog),
has a period of fou r afte r wh ich it has moved a distance of J2 in one of
twelve di rections- perpendicular to one coordinate ax is and at an ang le of
45 degrees with the othe r two.

2.3 .1 Additional shapes of Life 4555

The re lative low density of stable life (result ing when we start with pseudo­
random primordial soup) is more than compensated for by the rich variety
and symmetry of small Life forms . Several of these "naturally" occurri ng
forms are shown in figure 9.

We may create primordia l soup in seve ral ways. Perhaps the easiest
me thod is to initiali ze each cell in our un iverse according to the ou tput
of a random number gen erator. For example, on ou r exhaustive journey
through t he universe, as we pass each cell generate a random number, T.

Then, for some fixed constant, k, if r < k , let that cell be alive, ot he rwise
not.

We can get some idea of the re lative paucity of Life forms by examining
tab le 3. The entries were found by applying the "soup st irring" rule (4512)g
repeatedly g t imes to a 70 X 70 X 70 space that had been filled with about
40 random living cells. The rule (4555) was then emp loyed. Ten samples
were made with g set to various values be tween 14 and 27. All forms wer e
allowed to stab ilize; this us ually occurred after about 60 or 70 gene ratio ns .
The stable res idue was then tallied . T he lone observed glide r was no t
counted . Perhaps gliders are more common than this table wou ld indicate,
as they may have gone off the screen (or collided with something) before
being observed.

2.3 .2 Glider collisions in Life 4555

The huge number of reflect ions and rotations of the small stable forms
leads to a myriad of distinct possible collisions betwee n gliders and othe r
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Fig ure 8: The (4555) glider, showing the four states. When state one
is encountered again , the glider will have moved one unit up and one
forward (i.e., in the positi ve Y Z direct ion).
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Figure 9: A few of the small symmetric forms which occur "naturally" in
Life 4555.
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Object Number of elements Occurrences of
(see fig. 9) in the object object at stability
A 6 124
B 8 37
C (period = 4) 8 or 10 (ave. = 9) 36
D 6 28
E (period = 4) 8 or 10 (ave. = 9) 14
F 12 3
G 6 3
H 10 2
I (period = 2) 7 2
J 10 1
K 10 1
L (period = 4) 10 1
Glider 10 o (1 observed)
M 9 1
Total vo lume of residue objects = 1,761
Total volume of "universe" = 3,430,000
Approximate density of residue = .00051

Table 3: The most common Life 4555 objects resulting from con­
densation of primordial soup. The approximate density of the live
residue was .0005. This value can vary considerably depending upon
the density of the original primordial soup .

objects. One would expect (and indeed one finds) the usual result of such
collisions to be the ann ihilat ion of both objects. However, preliminary
exploration has revealed a surprising number of interesting interactions
(see (1) Appendix A for an extensive list). With the low (- 10-') density
of stable life ultimately settling out from "soup", the fact that so many
Life forms result when a glider (ten elements) collides with another small
object (abo ut ten elements) implies that some rather mysterious forces are
at work. A typical interesting collision result is shown in figure 10.

2.3.3 Manufactured stable forms

Although most of the stab le Life 4555 shapes found "in nature" [i.e., as the
result of some evolving popu lation, randomly created or otherwise) rarely
contain more than about a dozen elements, it is possible to construct exotic
stable forms (see figure 11). These forms would be highly unl ikely to appear
as the result of a primord ial soup exper iment. One should note that such
forms are harder to construct for Life 4555 than for Life 5766; this is due
to the more limited safe environment range.
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Figure 10: One of the more interesting Life 4555 glider collisions.
Here, a glider collides with an object called a "blinker". The origin al
glider and th e blinker are destroyed, but a new glider appears. If the
original glider was traveling in th e (- Y - Z ) direct ion, then the new
one will be heading toward (-X + Z).



392

g
l;]G:b:ID'.. [JLciG

o

Carter Bays

Qb . o
~

...
IMMOBILIZED : :::c . .. :.
GLI DERS "':": ", :.. . , .

Figure 11: Manufactured Life 4555 stable forms such as these would
never be found by conducting primordial soup experiments; they must
be carefully constructed.
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We may broaden our allowable configurations somewhat by treating cor­
ner, edge, and side ne ighbors as distinct types. Hence, we have six "face"
neighbo rs, twelve "edge" neighbors and eight "cor ner" neighb ors (see figure
12). For the Life game (whether in two or three dimensions ), all ne ighbors
have equal weight, whether touching on a face or a corner. We int rod uce
the following notation. Let R denote any rule of the form E1EuFiFu. Then ,
Life.100 R denotes a neighborhood consist ing only of the eight corner neigh­
bors; Life.010 R denotes a neighborhood cons ist ing only of the twelve edge
neighbors , and Life.DOl R similarly deals only with the six face neighbors.
Thus, Life 4555 can also be written Life.111 4555 , etc.

Two additional gliders have been found -one in Life.Oll 4544 and an­
ot her in Life.110 4544. These are the only ru les that seem to support
gliders. (Here, we do not consider rules such as Life.x 1111, which provably
allows infinite growth .) Unfortunate ly, pr imordial soup experiments with
Life.110 4544 and Life 011.4544 usually lead to unbounded growth; hence,
these rules have not been investigated furt her .

It is very important to note that if we expand our rules to con sider
the more general neighborhood configuration (there are 226 not counting
reflections and rotations), then other gliders probably exist and definition
1 can likely be sat isfied- but the beauty of Life is its simplicity. The next
section discusses the most elegant rul e of all.

4. Another Game of Life

Much energy has been expended in an effort to discover a Life game in
the two-dimensional hexagonal grid, where each cell has six ne ighbors. Un­
fortunately, no worthy rule exists, unless we consider exot ic configurations
such as Golay surrounds 151.

But let us expand the two-dimensional hexagonal grid into three di­
mensions. We then obtain the hexahedral tessellation, a universe where
neighbors can be represented by the corners of the 14-sided hexadecahedron
(figure 13). Here, there are 12 neighbors which line up in four intersecting
hexagons. These hexagons form four non-orthogonal planes which are par­
allel to the sides of a regular tetra hedron. This configuration can also be
represented by "densely packed spheres" an d conforms to certain natural
crystal struct ures .

Note that t here are two d ist inct universes , U and U,. (see figure 13). For
the remainder of this discussion, we shall dea l only with U j U,. is obtained by
reflecting U in a vertical plane. Also, we shall use spheres to represent cells,
although we could also use hexadecahedrons, or , more s imply, points with
neighbors connected by lines of equal length. Aga in , al though there are 212

possible neighborhood configurations, we shall only consider the quantity
of neighbors and not their orientation. To narrow down the possible Life
ru les, note the following th eorems.
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Figure 12: Two glide rs have been discovered for life rules that would
be "worthy of the name ," except primordial growth under these rules
is unlimited .
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Figure 13: (C lockwise from upper left) The skeleton of a tetrahedron
shows the four planes (A-D) that are parallel to the four hexagonal
neighborhood s in U. U,. is obtained by reflecting U in a vert ical plane.
The two universes are distinct. The little glider has two states and
travels parallel to an edge (a-f) . By removing anyone of the cells
(r,s), we obtain a different orientation; hence, there are 24 different
orientat ions. The six glide rs at gene ra t ion zero w ill travel parallel to
edges [e- I]: at gene ration 17, t hey have advanced as indicat ed . As it
advances, the 100element big glider resembles a frog. The 7-element
lit tl e glider is the "tadpole».
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Theor em 1 1. Any rule EjEuF,Fu where .Fl ~ 4 canno t suppo rt a glider.

The proof is analogous to that of theore m 3, and the theorem below
corresponds to theorem 2.

Theorem 12. Any rule E,EuF,Fu wh ere Fl ::; 2 allows unlim it ed growth .

T hus, if any Game of Life exists, it must be of the form E,Eu33. The
only rule th at seems to exh ibit glide rs is (rather nicely) R = (3333) (see
figure 13). This rule a lso has bo unded growth; hence, ou r defini tion of a
Life game "worthy of the name" has been satisfied .

4 .1 Symmetry of objects in Life 3333

One of t he most in teres t ing features of Life 3333 is that every stab le or
oscillat ing object so far discovered exhibits symmetry in some form. For
convenience, cons ider the tetrahedron in figure 13. itself constructed of
cells in U. (By the way. this t et rahedr on is not a st ab le str uct ure in Life
3333.) The four ax is planes correspond to sides A, B, C, an d D; the edges
me nt ioned below refer to a, b , c, d , e, and f. So far , objects discovered have
exh ib ited symmetry abo ut:

1. a point (six-way)

2. a point (four-way)

3. a line perpendicular to a side (six-way)

4. a line perpendicul ar to a side (three-way)

5. a line perpendicular to a side (four-way)

6. a line perpendicular to a side and the side

7. a line perpendicular to two opposing edges [e.g. edges a and e)

8. a line describ ed above and a plane perpendicular to this line

9. a plane parallel to a side and perpendicular to the opp osing side

10. a plane described above and a plane perpendicular to this plane

Wh en figuring the symmetry of a periodic object, we must cons ider whether
obj ect ph ases are reflections of each other, rotations of each other, and so
on . We need to find the symmetry type in order to determine how many
different orientations of the object exist. For exam ple, if an object exhibits
six-way symmetry about a point, then there is only one distinct ori entation.
On t he ot her hand, if a to tally asymmetric object were found (so far it has
not been), it would have 48 distinct orientations. Objects with distinct
ori entations numbering all the factors of 24 have been found (see figure
14).

Life 3333 is currently under intense investigation an d may ultimately
be revealed as the most interesting Life game of all .
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Figure 14: Here are just a few of the many objects in Life 3333. All
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rare.
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5. Programming the Games of Life 4555 and Life 5766

For the sm all computer, two types of a lgorit hms may be emp loyed. Mo re
exotic ap proaches pr ob abl y can b e found , but t he methods be low are rea­
sona bly st raight forwa rd. The discussion here uses R = (4555); R = (5766)
could just as easily be em ployed. The non-orthogonal Life 3333 prese nts a
speci al programming problem and will be deferred to lat er work .

M ethod A. Tally living cells in the leading nine-element "plane" as it
sweeps across space. Thus, at a given ce ll, we need to make on ly 11
calculations instead of 26. Essentially, as we check neighbors for each
cell, we add the living cells found in leading n ine elements, subtract
the t ra iling n ine, an d ad just the center. This concept can be ca rr ied
one d imension further, tallying a leading three-element line in each
ni ne-element plane; however, we only save about three calculations.
Method A is usefu l wh en developing start ing sh apes or creating pri­
mordial soup. It also can be used when the density of living ce lls is
re latively h igh.

Method B. This method utilizes the fact that populations are relatively
sparse. Keep with in each cell: (a) whether it is dead or alive and (b)
the number of living neighbors .

Option 1 . As we are examin ing each cell in the universe , if a ce ll is
nonvital an d has fewer than five neighbors, take no action . This
can be done wi th one test [i .e., represent "alive" by adding, say,
32 to the number of neighbor s . Our loop then checks wh et her
a cell is less than five). We then check for other less frequent
situations. If a cell is to die, subtract one from each of its neigh­
bo rs, and if a new cell is bo rn, add one to each neighb or. This
method will speed up or slow down as the p opulation grows an d
shrinks.

Option 2. Keep the living cells so rt ed in some fas h ion (or in a hash
table for quick access). Then, we need only examine ch an ged
cells and alter next-generation states wh ere appropriate while we
are tallying neighbors. Hen ce, if we find that a new cell is born,
we immedi ately place it in t he list of changes for the next gener­
ation. Similarly, if a ce ll dies , we place it on the list of changes
indicating that it is to be removed . Aft er t he entire universe has
been examine d , we merge the "changes" (adds and deletes) with
t he prior gen eration 's living ce ll list. This algorit hm should use
hash t ables for the changes and shou ld keep track of the neigh­
borhoods and whether a cell is alive, in a three-dimensional array
(sparse or otherwise). Note that our three-dimensional universe
array can he as large as memory allows, with little degradat ion
to the execution time. Furthermore, if we use sparse hash ar­
rays, an in finit e universe is possible. This a lgorithm is rathe r
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tricky to implement, but can be exceedingly fast . It has been
implemented in C on the Ridge 32 and the Macintosh comput­
ers and evaluates most patterns at about 4 to 15 generations per
second, depending upon the pattern size.

5 .1 Execution speed of the algorithms

(For all the cases ab ou t to be discussed, we have ignored the time required
to disp lay the cubes.) Let N be the size of the universe cube edge and let
p be the number of living objects. We should note that a "wors t case" but
trivial algorithm simp ly looks at every cell and tallies the neighbors. This
algorithm runs in t ime 26kN3

, where k is some cons tant that depends upon
the t ime required on a par ticular computer to fetch an element from a three­
dimensional array. Method A reduces this t ime to l1kNs. Method B option
1 increases the spee d to ab ou t kN3 + 26k t p, where kt ~ 2k . Since p <
NS , we obt ain a significant increase in speed. Method B option 2 further
enhances the speed by eliminat ing the NS te rm, achieving approxima tely
26k t p + kzp . Here, kz is somewhat larger than k and depe nds upon the
hashing methods emp loyed. A fur ther characterist ic of this method is the
fact that a particular cu be may come and go in the "cha nges" list several
t imes during evalu ation of a given generation before its final status (alive or
dead) is de termined. Experience has indicated that for Life 4555 there are
usually t hr ee times as many references to the "changes" hash table during
generation eva luation as there are actual changes that finally get merged
and plotted at the end of tha t particular generation evalu ation. Some sort
of exotic parallel architecture could avoid this.

6. Summary and conclusion

The two rules for three-dimensional Life "worthy of the name" in the or­
thogonal universe have been presented and investigated. The rul e (5766)
relates closely to Conway's two-dimensional Life-to t he extent that any
three-dimensi onal rule could. Many of Conway's shapes have an alogs un­
der (5766) ; fur thermore, Conway's ent ire uni verse, or an infini te number of
para llel universes, can be contained with t ime-space bar riers .

The rule (4555) yields a distinct r ich universe of small symmetric stable
and oscillating forms. T his rule has little in common with eit her Conway's
Life or the rule (5766). Other rules such as (5655) and (4666) are interest­
ing in t hat they support small symmetric oscillators, bu t they do not fit
defin ition 1.

6 .1 Possible limitations

There are two important differences between the behavior-at-large of Life
forms in two-dimensional Life and three-dimensional Life. Stable residue
event ually resulting from appropriate ly primed "random primordi al soup"
occupies about 5 percent of Conway 's universe, but only about .05 to .1
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percent in a three-dimensional Life universe. This paucity of population
seems to be compensated for by the large number of small stable forms,
their reflect ions and rotations; hence , interest ing interactions are abundant.
Life forms, though sparse, are intense.

The second difference, un fortunately, may ultimately be a factor that
prevents either three-dimensional Life rule from yield ing exotic constructs
similar to Conway's huge "puffer train" or "sp aceship factory" . Many con­
figurat ions in Conway 's Life a llow a large number of generations to elapse
before sett ling down . (For example, the seven-element "acorn" evolves to
a maximum of 1057 living ce lls an d finally stabilizes at generat ion 5206.)
Hence , the possibility of complicated intermediate interactions. Most three­
dimensional Life inter actions , on the other hand, converge rapidly-more
so under (5766) than (4555). (Moreover, the line between converging and
diverging rules is a fine one; e.g. , R = (5755) exh ib its unlimi ted growth .)
T his is not meant to imply that , for example, a glider gun does no t exist
in t hree dimensions . In fact , under (5766L it is likely that one might be
constructed by stabilizing the emerging glider from a two-dimensional gu n
analog that has been confined wit h a t ime-space barrier. Such a construc­
t ion would probably consist of carefully orchestrated oscillators sit uated at
the barrie r edge near the emerging glider.

On the ot her hand, a "native" glider gun under either (5766) or (4555)
will be difficult to discover-the task appears more difficult for (5766) Life
since a non-ana logous glider does not appear to exist. Of course, a three­
dimensional gun of any type would open the universe to the construction
of sparse b ut purposeful Life forms.

The recent discovery of Life 3333 in the hexahedral tessellation is cur­
rently undergoing intense invest igati on and, due to the highly symmetric
nature of its objects (and the relevance to inorganic crystal structure), may
eventually turn out to be the most in teresting three-dime nsional Game of
Life "worthy of the n ame."
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