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Are the sciences not advancing at an ever increasing speed? This popu-
lar perspective is contrasted with the view that scientific research is actu-
ally  closing  in  on  complexity  barriers  and  that,  as  a  consequence,  sci-
ence  funding  actually  sees  diminishing  returns,  at  least  in  established
fields. In order to stimulate a larger discussion, two exemplary cases are
investigated:  the linear increase in human life  expectancy over the past
170  years  and  advances  in  the  reliability  of  numerical  short-  and
medium-term weather predictions during the past 50 years. It is argued
that the outcome of science and technology funding in terms of measur-
able  results  is  a  highly  sublinear  function  of  the  amount  of  resources
committed. Supporting a range of small to medium research projects in-
stead of a few large ones will be, as a corollary, a more efficient use of
resources for science funding agencies. 

1. Measuring Scientific Progress

There  is  a  curious  dichotomy  in  our  current  science  and  technology
(S&T) landscape. On one side, we see advances on scales as never be-
fore  in  human  history.  There  is,  on  the  other  side,  a  growing  senti-
ment among researchers that progress in science is  becoming increas-
ingly  harder  to  achieve.  This  sentiment  is  based in  part  on anecdotal
evidence that is continuously reinforced by new insights. On the anec-
dotal  side,  there is  the phenomenon that  the requirements  for  a typi-
cal  Ph.D.  thesis  in  the  natural  sciences  have  increased  dramatically
over the past 50 years. It is well known that nowadays it takes much
longer for a young scientist to reach the forefront of research.  

The  notion  that  scientific  research  needs  to  deal  with  rising  levels
of complexity is especially evident when studying the realm of life. An
example  of  new  insights  bolstering  this  notion  are  the  results  of  the
ENCODE  project  [1],  showing  that  our  genome  not  only  contains
21 000 protein encoding genes, but also has up to 4 million regulatory
switches  where  transcription  factors  could  bind,  besides  a  myriad  of
other  regulatory  sequences.  Is  it  possible  to  quantify  this  notion of  a
rising  complexity  level?  This  is  the  central  topic  of  our  investigation
and  it  involves  the  quest  to  actually  measure  the  pace  of  scientific
progress.
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Scientific progress is notoriously hard to measure. It does not really
make  sense  to  quantify  advances  in  fundamental  research;  a  single
publication leading to a paradigm shift  may be invaluable.  However,
the  vast  majority  of  scientific  research  efforts  are  directed  toward
achieving incremental progress, and are not of a foundational charac-
ter.  Hence,  it  is  worthwhile  to  ask  how  taxpayers’  money  allocated
for public science funding could be spent most efficiently. 

In  order  to  make  a  first  inroad,  we  investigate  two large-scale  en-
deavors of humanity. The first case study concerns the long-term im-
pact  of  research  and  investments  in  medicine  and  healthcare  on  life
expectancy  over  the  past  170  years.  We  ask  the  somewhat  antipolar
question: why did the average life expectancy rise so slowly? The sec-
ond example regards advances in the reliability of short- and medium-
term numerical  weather forecasts  since the 1950s.  Weather dynamics
have potentially chaotic regimes and the pace of progress in predictive
meteorology  may  be  limited  by  a  complexity  barrier  resulting  from
systemic difficulties in predicting chaotic dynamical systems. 

We find that measurable progress in S&T is a highly sublinear func-
tion  of  the  invested  resources,  reflecting  the  law  of  diminishing  re-
turns  that  is  well  studied  in  economical  contexts  [2].  Some  scientific
insights can be achieved only through large collaborative projects, like
the search for the Higgs boson. However, our results show that small
scientific endeavors do generically offer a higher potential for returns
in terms of results per allocated funding. 

Many natural  systems investigated in the sciences are complex dy-
namical  systems  [3].  The  brain  in  the  neurosciences  and  the  human
genome in bioinformatics are examples from the realm of life.  Short-
and  long-term weather  and  climate  evolution,  many-body  systems  in
condensed matter physics, and elementary particle condensates are ex-
amples from the realm of physics. Complex systems are both difficult
to  understand  and  investigate  on  a  conceptual  basis,  as  well  as  to
model  and  simulate  numerically.  These  two  difficulties  impinge  the
pace  of  progress  when  investigating  complex  biological  or  physical
systems. We find the notion of a malleable complexity barrier to be a
good visualization for the challenges confronting scientists today. 

2. Record Life Expectancy

Human  life  expectancy  has  seen  a  dramatic  rise  since  the  middle  of
the eighteenth century. On a global level, the “record life expectancy”
is commonly considered as the life expectancy at birth of the country
having  the  highest  life  expectancy  worldwide.  The  record  life  ex-
pectancy  has  seen  a  strikingly  linear  growth  for  about  150  years,  as
shown in Figure 1. It has been repeatedly predicted that this steady in-
crease  of  human  life  expectancy  would  need  to  level  off  at  a  certain
point,  invoking  biological  limits. All  these  predicted  limits  have  been
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broken  hitherto  without  exception  [4,  6].  This  spectacular  steady
growth  of  the  record  life  expectancy  raises  a  series  of  interesting
points.  

Figure 1. Record  female  life  expectancy  [4,  5].  This  plot  shows  the  life  ex-
pectancy  of  the  country  with  the  highest  average  female  life  expectancy  in  a
given  year,  for  all  calendar  years.  The  line  is  a  least  square  linear  regression
with the increase in record life expectancy averaging 2.4 years for 10 calendar
years.   

Advances in healthcare and medicine will lead generically to raising
life  expectancy.  However,  it  remains  unclear  which  forces  determine
the magnitude of the observed rate of 2.4 years per every 10 calendar
years  and  how  the  observed  growth  rate  depends  on  the  overall
amount of  resources devoted [7].  On one hand,  breakthroughs in re-
search have been postulated to boost human lifespans rapidly [8]. On
the other hand, if  a putative natural limit exists [4, 9],  it  should lead
to a gradual leveling off. We have yet no definite answers to these fun-
damental questions.

Longevity is a central issue in our culture and major efforts and re-
sources  are  devoted  by  our  societies  toward  increasing  health  levels
and lifespan.  Figure 1 demonstrates  that  returns on investments have
dramatically  decreased  during  the  past  150  years.  The  initial  growth
in life expectancy resulted from simple hygiene measures, followed by
progress  in  immunology  and  antibiotics  research.  Lately,  massive  in-
vestments  in  pharmacology,  technical  medicine,  and  bioinformatics
have  been  necessary  to  keep  up  the  steady  linear  advance  in  life  ex-
pectancy.  Relative  progress  has  actually  decreased  in  spite  of  these
massive efforts; a linear increase relative to a base of 45 years is twice
as large as a linear increase (with the same slope) relative to a base of
90 years. 
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Investments  in medicine and healthcare have seen a roughly expo-
nential  increase  during  the  past  half  a  century  [12,  13].  The  driving
forces behind these ever-rising costs are debated and could be rooted
either  in  the  desire  to  increase  health  and  well-being  quite  generally
or, more directly, in the quest to postpone death as far as possible. It
has  been  argued,  in  this  context,  that  the  economic  rationale  behind
the  ever-rising  levels  of  healthcare  spending  lies  in  the  fact  that  hu-
mans attribute an income elasticity well above unity to improvements
of  life  expectancy,  which  seems  to  have  psychologically  a  nondeclin-
ing marginal utility [14]. This argument indicates that the average life
expectancy  is  indeed  a  valid  yardstick  for  measuring  the  overall  ad-
vancement in health and medicine. The quantitative efficiency of S&T
research efforts  in  the  healthcare  sector  is  hence,  as  measured by  the
observed extension of human life expectancy, a highly sublinear func-
tion of resources devoted. Returns on investment are seen to diminish
rapidly in medicine and healthcare. 

3. Weather Forecast Reliability 

The dynamics of weather and climate for medium- to long-term time
scales  is  known  to  contain  chaotic  components  [15].  Indeed,  the
Lorenz model [16], one of the central models in the theory of chaotic
and complex systems, is a hydrodynamic convection model. Medium-
to long-term weather  forecasting is  hence considered a  challenge and
massive investments in modeling, data acquisition, and computational
infrastructure  have  been  made  in  order  to  achieve  improved  forecast
performances.  

A range of numerical forecasting skill scores for short- to medium-
term  weather  prediction  are  evaluated  continuously.  This  is  done  in
order to track the quality of daily weather predictions by national and
international weather and climate agencies. Figure 2 shows the histori-
cal  evolution of  two distinct  prediction reliability  measures.  The first
is the 1 through 7 days 500 hPa forecast correlation coefficients of the
Germany Weather Service (DWD) [11, 17]. A value close to unity sig-
nals optimal forecasting, while values below 60% correspond to essen-
tially useless predictions. The introduction of a new model in 1990 is
reflected  in  the  data.  Also  given  in  Figure  2,  for  a  longer-range  per-
spective  (1955–1991),  is  the  S1  36  hour  skill  score  of  the  United
States  National  Oceanic  and  Atmospheric  Administration  (NOAA)
[10, 18], which we normalized to the interval @0, 1D. The S1 skill score
contains gradients so it is qualitatively different from the 500 hPa cor-
relation coefficient [18], so a direct comparison of the absolute values
is  not  meaningful  for  these  two  weather  forecasting  reliability  mea-
sures. 
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Figure 2. Two  distinct  weather  forecast  reliability  measures  are  shown,  the
500 MB 36 hour S1 score of the NOAA [10] (black data), and the 1 through
7  days  500 hPa  correlation  coefficient  of  the  DWD  [11]  (color  data).  Note
that  these  two  reliability  scores  are  differently  defined  and  cannot  be  com-
pared directly on a quantitative basis.   

One  of  the  key  ingredients  for  numerical  weather  prediction,  be-
sides modeling and data acquisition [18],  is  computing power. Avail-
able  computing  power  has  seen  an  exponential  growth  over  the  past
60  years  following  Moore’s  law  [19,  20]  with  a  doubling  period  of
about  1.5  years.  The  resulting  advance  in  computational  power  has
been  about  1010  in  50  years.  The  computational  facilities  employed
for  numerical  weather  forecasting  have  seen  corresponding  increases
[18],  contributing to the observed improvements in weather forecast-
ing skills. 

In  order  to  estimate  the  scaling  between  computational  resources
and forecasting skills  quantitatively,  Figure  3 shows the standardized
forecasting  error  H1 - reliabilityL  corresponding  to  the  remaining  dif-
ference  to  optimal  forecasting.  Because  the  S1  skill  score  data  is  so
distant  from optimality,  we focus on the DWD data for  a systematic
analysis.  In  Figure  3  we  have  replotted  the  DWD  data  as
- log H1 - reliabilityL,  using  a  three-year  trailing  average  as  a  smooth-
ing  procedure.  In  order  to  compare  the  growth  rates  of  prediction
accuracy for different forecasting timescales, we analyze the data pre-
sented in Figure 3 using least square regressions. They fit the data rea-
sonably well, indicating that the long-term growth of prediction accu-
racy is roughly exponential. 
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Figure 3. Linear–log  plot  of  the  DWD  data  (three  years  trailing  average)  of
Figure  2.  The lines  are  least  square  regressions;  the  inverse  slope in  terms of
the number of years T  needed to double the relative precision is given in the
legend.

The  time  needed  to  double  the  relative  accuracy,  that  is,  to  halve
the forecasting error H1 - reliabilityL,  grows systematically with an in-
creasing  forecasting  timespan  (see  the  legend  of  Figure  3).  The  accu-
racy  of  one-day  weather  predictions  has  doubled  historically  roughly
every 10 years. On the other hand, about 40 years seem to be neces-
sary for improving the reliability of seven-day weather forecasts by a
corresponding factor. Out of these results we conclude the following.

First,  the quantitative progress  in weather  prediction accuracy is  a
highly sublinear function of  committed computing resources.  The ac-
curacy scales roughly, with respect to the power Pc of the computer fa-
cilities employed, as IPc

1.5M1ê10 ! Pc
0.15  for one-day forecasting and as

IPc
1.5M1ê40 ! Pc

0.0375  for  seven-day  predictions.  The  reliability  of  the
skill  scores  is  dependent  additionally  on  advances  in  modeling  and
data acquisition;  however,  the respective functional  relations of  these
dependencies are beyond the scope of the present discussion. 

Second,  forecasting  becomes  more  difficult  with  increasing  predic-
tion  periods.  Indeed,  it  has  been  suggested  that  it  may  essentially  be
impossible to achieve useful forecasting reliabilities for 14 to 21 days
in advance [21],  at  least  with economically  justifiable  amounts of  re-
sources. This can be seen by plotting the weather forecasting scores as
a function of the forecasting period, as shown in Figure 4,  where we
plot  the  T255L40  reliability  score  of  the  European  Center  for
Medium-Range  Weather  Forecasts  (ECMWF)  from  2001  [21].  Also
shown in  Figure  4  are  visual  guides  in  the  form  of  two-parameter
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least-square fits of the functional form 

(1)1 -
t

t + a expH-btL ,

where  t ! 1, 2, …  days,  with  adjustable  parameters  a  and  b.  This
functional  form  captures  the  notion  that  it  becomes  progressively
more  difficult  to  achieve  reliable  forecasting  with  increasing  predic-
tion  periods.  The  functional  form  of  this  increase  in  complexity  has
been assumed here to be exponential.  

Figure 4. Forecasting  reliability  of  the  ECMWF  T255L40  score  from  2001
[21]  (violet  data),  renormalized  to  @0, 1D,  and  of  the  2011  DWD  500 hPa
score (see Figure 2, green data). The dashed lines are two-parameter fits using
equation  (1),  intended  as  visual  guides.  The  brown  dashed  line  represents  a
putative scenario for reliability scores achievable with further advancements.

Generalizing  these  two  observations,  we  may  relate  the  measured
S&T progress to the amount of committed resources via the scaling re-
lation 

(2)progress ! HresourcesLa,

with  a  sublinear  scaling  exponent  a < 1.  Our  results,  as  shown  in
Figures 3 and 4, indicate that the scaling exponent a rapidly drops to-
ward  zero  with  increasing  complexity  of  the  task  to  be  solved.  We
propose to use the term complexity barrier for this phenomenon. For
the case of  extending human life  expectancy,  which is  rising linearly,
invested resources have increased roughly exponentially [12, 13], lead-
ing to a logarithmic relation, progress ! logHresourcesL. A log-relation
corresponds to a vanishing scaling exponent a Ø 0, indicating that in-
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creasing the average human life expectancy is a task of very high com-
plexity.   

4. Entering the Human Factor  

The  complexity  barrier  present  in  the  context  of  short-  to  medium-
term weather forecasting is not hard. Progress is achievable when com-
mitting  increasingly  larger  amounts  of  resources.  The  same holds  for
the complexity barrier present in the aging problem. Extending the av-
erage human life expectancy has been possible for the past 170 years
by devoting strongly increasing amounts of resources to medicine and
healthcare. The magnitude of the resources committed has been grow-
ing not only in absolute terms, but also as a fraction of gross national
products  (GNPs).  The rationale  for  the  underlying collective  decision
of  resource  distribution  is  to  be  attributed  to  the  human  factor;
progress in extending the human life span is highly valued.   

We  have  discussed  here  only  two  examples,  but  believe  that
progress in science, whenever it can be measured on a quantitative ba-
sis,  is  quite  generically  a  strongly  sublinear  function  f HxL  of  the
amount  x  of  resources  devoted.  Sublinear  dependencies  are  concave
and  for  any  concave  function  f HxL  the  total  return  ⁄i f HxiL  is  larger
when splitting the total amount of resources x into a series of subpack-
ages of smaller sizes xi, 

f HxL < ‚
i

f HxiL, ‚
i

xi ! x.

For  funding  agencies  this  indicates  that  a  substantially  more  efficient
use  of  available  resources  is  to  prioritize  small  to  medium  projects,
whenever feasible.  

On a last note, it is interesting to speculate whether the human fac-
tor  influences  the  pace  of  progress  in  S&T  in  an  even  more  direct
way.  The human brain is  well  known to discount incoming informa-
tion streams logarithmically,  a relation known as the Weber–Fechner
law [22–24]. This exponential data compression is necessary in order
not to drown in the daily flood of sensory impressions. It has been ob-
served  recently  that  these  neuropsychological  constraints  shape  the
statistics  of  global  human data production in  terms of  data  files  that
are  publicly  available  from  the  internet  [25].  The  human  factor  is
hence in evidence, at least in this particular aspect of human S&T ef-
forts, in the statistics of global public data generation. It is hence con-
ceivable, as a matter of principle, that the pace of progress close to a
complexity barrier is not only influenced by the overall amount of fi-
nancial  and  physical  resources  committed,  but  also  more  directly  by
the neuropsychology of human thought processes. 
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