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1. Introduction

Most readers are familiar with cellular automata (CA) utilizing squares
as cells, and are also familiar with the most famous automaton, Con-
way’s Game of Life. This game is played on an infinite grid of squares,
and has been thoroughly explored in many publications [1, 2] as well
as on numerous websites.

In 1994 in this journal the author introduced several games of life
in the triangular tessellation [3]. It now appears, not surprisingly, that
other tessellations also support games of life.

1.1 Some terminology

We define an oscillator as a finite shape with an inert nonliving boundary
and a finite period !1. A boundary is inert if we can place the oscillator,
boundary and all, in a universe of nonliving cells without altering the
behavior of the oscillator (see Figure 1). In many cases, a period >1
oscillator may, during its period, exhibit phases where the shape may
break into two (or more) parts, each of which appears to have a bound-
ary. Naturally, in this case the boundary is not inert and the two parts
would usually not constitute two oscillators.

An oscillator that translates is called a glider.
A rule is a game of life (GL) rule if it satisfies the criteria below.

A. When counting the neighbors of a cell, all touching neighbors are consid-
ered and treated the same.

B. At least one glider exists.

C. Start with a finite wrapped universe that is completely filled with a ran-
dom pattern. Then after a finite number of generations, all such patterns
eventually must either disappear, or decompose into one or more oscilla-
tors. Rules exhibiting this property are said to be stable.

Condition C requires that random patterns do not grow without bounds.
In fact, random patterns under most rules either quickly stabilize by de-
composing into several small oscillators, or exhibit unbounded growth
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(a) (b) (c)

Figure 1. Two potential 2,3/3 oscillators (period # 1) are shown in (a) with the
boundaries indicated by the dotted cells. If we separate the two forms (b) we
find that the lower form is indeed an oscillator, but the upper form changes its
behavior and starts to disintegrate. This change initiates along the boundary
portion indicated by “x”, which hence is not an inert boundary and the upper
shape alone is not an oscillator. But in (c) we note that the boundary is inert,
hence the form within this boundary is an oscillator.

and churn on randomly forever. The GL rule for Conway’s Life is a
borderline case, and that contributes to its richness. Moreover it is pos-
sible to construct quadratic growth patterns under Conway’s Life rather
easily. But Condition C eliminates the possibility that they could persist.
Intuitively, all we are saying is that under a GL rule, random patterns
eventually settle down into zero or more elementary forms.

In [4] this author introduced the notation El, Eu, Fl, Fu for specifying
GL rules. Here, El, Eu (the “environment” rule) gives the range of live
touching neighbors required so that a currently live cell remains alive
the next generation. Fl, Fu (the “fertility” rule) specifies the range for
live touching neighbors so that a currently dead cell will come to life in
the next generation. Thus, Conway’s Life is given by the rule 2,3,3,3,
which says, “a dead cell comes to life if it is touching exactly three live
neighbors, and a live cell will remain alive if it is touching two or three
live neighbors.” (Note that in the square grid, each cell, or square, has
exactly eight neighbors.)

Unfortunately the notation from [4] is somewhat limited. A better
and more frequently used notation is now given. Here we do not
specify a range; rather we give individual values, E1, E2, . . . /F1, F2, . . . in
ascending order, for environment and fertility. Hence Conway’s Life is
specified by 2,3/3. The rule 2,5/3,6 (not a GL rule) means, “a dead cell
comes to life if it is touching exactly three or six live neighbors, and a
live cell will remain alive if it is touching two or five live neighbors.”
This notation, used throughout this paper, expands the number of rules
that can be specified; indeed it turns out that rule 2,4,5/3 is also a GL
rule, exhibiting the glider shown in Figure 2. One might note that a
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Figure 2. The 2,4,5/3 glider has a period of seven and moves one cell in the
direction shown.

Figure 3. The 3,5/2 hex glider has a period of five, moving one cell vertically (up).

popular rule commonly known as “3-4 Life,” (the rule 3,4/3,4) is not a
true GL rule, as random blobs exhibit unbounded growth.

2. Hexagonal games of life

The hexagonal tessellation has been investigated extensively in the past,
but no valid game of life rule has turned up. The closest rules have
involved utilizing “Golay Surrounds” [6], which treat neighbors differ-
ently depending upon their relative position around the cell in question.
In that case, a couple of gliders were discovered in the hexagonal grid
[6], but these rules do not qualify as GL rules (see Condition A).

After considerable searching, a valid hexagonal GL rule has been
found. The rule 3,5/2 satisfies all three criteria; its discovered glider has
a period of five and is illustrated in Figure 3. Of course, this rule is not
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Figure 4. The 3/2,4,5 hex glider has a period of 10 and moves vertically two
cells. Unfortunately, the rule 3/2,4,5 does not quite qualify as a GL rule.

nearly as rich as Conway’s Life; however there may be other gliders, as
well as interesting patterns and oscillators, but those remain for future
work.

Another rule, 3/2,4,5, supports a period 10 glider (Figure 4); unfortu-
nately, this rule does not qualify (barely) as a GL rule because sufficiently
large random blobs exhibit instability by growing slowly, churning on
forever.

Most rules can be eliminated as GL candidates if we note that F1
must be exactly 2, for if F1 # 1, then the rule will be unstable, and if
F1 # 3, then no glider is possible.

3. The pentagonal tessellation

There are many ways to tessellate with pentagons (see Figure 5). Here
we have chosen the “Cairo tiling,” which in its most regular form is
composed of equilateral “isosceles” pentagons. It is of interest in that
the neighbor count (seven) is between that for the hexagonal and square
tessellations (six and eight respectively).

So far, one GL rule has been discovered, namely 2,3/3,4,6. This rule
supports an unusual glider with a period of 48 (Figure 6). There may be
other GL rules, but their gliders will be difficult to find, since symmet-
ric random arrangements are not as common in this tessellation, and
such arrangements greatly speed up the discovery process [7]. Never-
theless there are probably other pentagonal GL rules, given the variety
of topologically distinct tessellations.

4. The triangular tessellation

This grid was investigated in [3]; since then, more GL rules have been
discovered (Figure 7). The glider for 2,7/3 is of interest in that during
several of its states, it only contains four cells. It has a period of 18
and at several points looms rather large, looking somewhat like a fish
as it wanders torturously on its way. It is the most commonly occurring
object under this rule when starting with grids composed of random live
cells. Other recently discovered GL rules are 2/3, 3,5/4, 2,4/4,6, and
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Figure 5. 14 tiling types for convex pentagons have been cataloged [8]. These
are depicted here and have been arranged to reflect the number of touching
neighbors for each cell. In the case where the neighbor count varies depending
upon the cell, all the different counts are given. For example “67” means that
some cells have 6 neighbors, others 7. Here there are two tilings reflecting these
counts(67a and 67b). The Cairo tiling is at the upper left and is topologically
equivalent to 7a and 7b. Note also that 7c and 7d are topologically equivalent.
All other arrangements are distinct.

Complex Systems, 15 (2005) 245–252



250 C. Bays

Figure 6. The pentagonal glider 2,3/3,4,6 has a period of 48 and moves six units
vertically (up) for each cycle.

Figure 7. Other triangular GL rules. The incredible 2/3 glider has a period of 36
and at the end of the cycle will have moved four units vertically (down). The
2,7/3 glider exhibits several states containing only four or five cells. It has a
period of 18, after which it will have moved one cell in the direction shown.
It is the most common oscillator for this rule, which unfortunately exhibits a
paucity of other simple oscillators. An even more remarkable GL rule is 2,7,8/3.
The illustrated glider has a period of 80, moving 12 cells to the left. This glider
is quite remarkable, spewing off much material as it moves along (at one point,
there are more than 50 live cells in the configuration). 2,7,8/3 also supports the
glider for rule 2,7/3. The 2,4/4,6 glider has a period of eight. This orientation
moves two units up per period. The 3,5/4 glider has a period of three and moves
one unit to the upper left as shown. The 2,4,6/4,6 glider has a period of 10 and
moves one cell to the right. It slightly resembles the 2,4/4,6 glider, but note that
its movement is parallel to the bases of the triangles instead of perpendicular.

Complex Systems, 15 (2005) 245–252



A Note on the Game of Life in Hexagonal and Pentagonal Tessellations 251

2,4,6/4,6. The 2/3 glider is rather remarkable, being huge and having a
period of 36. These five additional GL rules brings the total number of
triangular GL rules to 11. More will probably surface.

5. Further work

Most of the results for this paper were found using the applets referred
to on my website [9] (under “cellular automata”). These applets allow
one to easily test rules for stability with random configurations, search
for gliders, and so forth, by performing experiments with small random
blobs. The ability to impose symmetry on these blobs greatly increases
the probability of finding interesting shapes.

It should be emphasized that in spite of all these game of life rules in
various tessellations, none has yet been found that rivals the richness of
Conway’s Game of Life. Only time and much investigation will reveal
if this fact remains true.
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